بررسی تأثیر زمان فرآیند اکسیداسیون الکترولیتی پلاسمایی بر رفتار خوردگی آلیاژ Ti-13Nb-13Zr در محلول رینگر هوازدایی شده
محورهای موضوعی : خوردگی و حفاظت موادمحمود حاجی صفری 1 * , آرمان زارع بیدکی 2 , امیر دانش پژوه 3
1 - گروه مهندسی مواد و متالورژی، دانشگاه آزاد اسلامی، واحد یزد، یزد، ایران
2 - گروه مهندسی مواد و متالورژی، دانشگاه آزاد اسلامی، واحد یزد، یزد، ایران
3 - گروه مهندسی مواد و متالورژی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
کلید واژه: آلیاژTi-13Nb-13Zr, اکسیداسیون الکترولیتی پلاسما (PEO ), پلاریزاسیون دینامیکی, محلول رینگر,
چکیده مقاله :
در بین آلیاژهای تیتانیوم، آلیاژ Ti-6Al-4V تا کنون بیشترین کاربرد را در زمینه ی کاربردهای زیستی داشته، ولی به دلیل سمی بودن Al و V، تحقیقات برای جایگزینی این آلیاژ با آلیاژ Ti-13Nb-13Zr به عنوان نسل جدید آلیاژهای تیتانیوم مطرح است. در این پژوهش از روش اکسیداسیون الکترولیتی پلاسمایی (PEO) برای ایجاد پوشش بر روی آلیاژ Ti-13Nb-13Zr در ولتاژ V250 و در زمان های 1، 4، 7 و 10 دقیقه در حمام حاوی یون های Ca و P استفاده شد. میکروساختار نمونه ها قبل و بعد از اعمال پوشش توسط میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) مورد بررسی قرار گرفت. برای بررسی رفتار خوردگی نمونه های آلیاژ Ti-13Nb-13Zr پوشش داده شده و فاقد پوشش از تغییرات پتانسیل مدار باز (OCP) و آزمون پلاریزاسیون دینامیکی در محلول رینگر هوازدایی شده استفاده شد. بررسی ها نشان داد که نمونه های پوشش داده شده به مدت 1 و 4 دقیقه بالاترین مقدار پتانسیل مدار باز داشته که بیانگر بیشترین پایداری ترمودینامیکی در میان نمونه ها می باشد. نتایج نشان داد که که فرآیند PEO باعث ایجاد فیلم های اکسیدی Ti6O و Nb6O و حاوی ترکیب CaHPO4 در سطح می باشد و با افزایش زمان فرآیند ضخامت پوشش تغییری نخواهد داشت. نتایج پلاریزاسیون نشان داد که نمونه پوشش داده شده به مدت 1 دقیقه کمترین نرخ خوردگی با دانسیته جریان خوردگی A/Cm27- 10 × 5/2 و پتانسیل خوردگی 12/0- ولت (نسبت به Ag/AgCl) را دارا می باشد.
Among different types of Ti alloys, Ti-6Al-4V alloy has been most used in biological applications. Because of the toxicity of Al and V elements there is trend for replacing them with Ti-13Nb-13Zr alloy as a new generation of titanium alloy. In the current study plasma electrolytic oxidation (PEO) process was used to create an oxide film on Ti-13Nb-13Zr alloy at different processing time of 1, 4, 7 and 10 minutes in a bath containing Ca and P ions at 250V. Microstructure of the specimens was studied by Field Emission Scanning Electron Microscope (FESEM). Rresults showed that the oxide film formed by PEO process contains Ti6O, Nb6O and CaHPO4 phases and increasing the time of process have no effect on the thickness of the coating. Dynamic Polarization test and time dependency of the open circuit potential was used for evaluating the corrosion behavior of the specimens in deaerated Ringer's solution. Results showed that the specimen treated for 1 minute has the lower icor and the higher Ecor (2.5×10-7 A/Cm2 and -0.12 V vs. Ag/AgCl respectively).
[1] M. Long & H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective”, Biomaterials, Vol. 19, pp. 1621–39, 1998.
[2] K. Wang, “The use of titanium for medical applications in the USA A Struct Mater: Prop Microstruct Process”, Mater Sci Eng, Vol. 213, pp. 134–137, 1996.
[3] M. Michał & N. Ginter, L Szyk-Warszyńska, Ż. Jerzy, M. Artur, R. Krzysztof, W. Antoni, S. Jacek, N. Paweł & S. Wojciech, “Anodic oxidation of the Ti–13Nb–13Zr alloy”, J Solid State Electrochem DOI 10.1007/s10008-014-, pp. 2446-2447, 2014.
[4] ع. عراقی، م. ج. هادیان فر، ط. طلایی خوزانی و م. ثانی، "بررسی خواص پوشش باا ساختار تغییرات تدریجی اکسید تیتانیوم/ هیدروکسی آپاتیت، اعمال شده به روش الکتروفورتیک بر روی آلیاژ تیتانیوم Ti-6Al-4V"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره2، تابستان95، صفحه 153-165.
[5] P. J. Aragon & S. F. Hulbert, “Corrosion of Ti-6A1-4V in simulated body fluids and bovine plasma”. J Biomed Mater Res, Vol. 6, pp. 155–64, 1972.
[6] E. Kobayashi, T. J. Wang, H. Doi & T. Yoneyama, “Mechanical properties and corrosion resistance of Ti±6Al±7Nb alloy dental castings”. Mater Sci: Mater Med, Vol. 9, pp. 567–74, 1998.
[7] M. Geetha, A. K. Singh, R. Asokamani & A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review”, Progress in Materials Science, Vol. 54, pp. 397–425, 2009.
[8] M. Montazeri, C. Dehghanian, M. Shokouhfar, A. Baradaran, “Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti–6Al–4V alloy and its corrosion behaviorˮ, Applied Surface Science, Vol. 257, pp. 7268–7275, 2011. doi:10.1016/j.apsusc.2011.03.103
[9] T. Moskalewicz, A. Kruk, M. Kot, S. Kayali & A. Czyrska-Filemonowic, “Characterization of microporous oxide layer synthesized on Ti–6Al–7Nb alloy by micro-arc oxidationˮ, Vol. 14, Issue 3, pp. 370–375, 2013. http://dx.doi.org/10.1016/j.acme.2013.09.002
[10] K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, M. Sandhyarani, A. C. Bose, V. Muthupandi & S. Subramanian, “Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti”, Electrochimica Acta, Vol. 105, pp. 468– 480, 2013. http://dx.doi.org/10.1016/j.electacta.2013.05.032
[11] ح. ر. فرنوش، "رفتار الکتروشیمیایی و چسبندگی پوشش های الکتروفروتیک نانو ساختار HA-TiO" فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 10، شماره1، تابستان95، صفحه 89-71.
[12] Sh. Ki Ryong, K. Yeon Sung, W. Yang. Hae, Y. Gun Ko & D. Hyuk Shin, “In vitro biological response to the oxide layer in pure titanium formed at different current densities by plasma electrolytic oxidation”, Applied Surface Science, Vol. 314, pp. 221–227,2014. http://dx.doi.org/10.1016/j.apsusc.2014.06.121
[13] S. Stojadinovi, R. Vasili, M. Petkovi, B. Kasalica, I. Belca, A. Zeki & L. J. Zekovi, “Characterization of the plasma electrolytic oxidation of titanium in sodium Metasilicate”, Applied Surface Science, Vol. 265, pp. 226– 233, 2013. http://dx.doi.org/10.1016/j.apsusc.2012.10.183
[14] M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran, “Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II”, Applied Surface Science, Vol. 258, pp. 2416– 2423, 2012.
[15] Y. U. Sen, Y. U. Zhen, G. U. I. WANG, H. A. N. Jian., M. A. Xi-qun & M. S. DARGUSCH, “Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy”, Trans Nonferrous Met.Soc. China, Vol. 21, pp. 573-580, 2011. DOI: 10.1016/S1003-6326(11)60753-X
[16] Zh. Yao, J. Yanli, F. Jia, Zh. Jiang & W. Fuping, “Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti–6Al–4V alloy”, Applied Surface Science, Vol. 254, pp. 4084–4091, 2008.
[17] M. Shokouhfar, C. Dehghanian & A. Baradaran, “Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance”, Applied Surface Science, Vol. 257, pp. 2617–2624, 2011. doi:10.1016/j.apsusc.2010.10.032
[18] D. Salih & U. Metin, “The tribological properties of bioceramic coatings produced on Ti6Al4V alloy by plasma electrolytic oxidation”, Ceramics International, Vol. 40, pp. 3627–3635, 2014. doi.org/10.1016/j.ceramint.2013.09.062
[19] B. S. Covino, Jr. Ch. H. Craig, S. D. Cramer, S. J. Bullard, M. Ziomek-Moroz, P. D. Jablonski, P. C. Turner, H. R. Radisch, Jr. N. A. Gokcen, C. M. Friend, & M. R. Edwards, “Corrosion Behavior of Platinum-Enhanced Radiopaque Stainless Steel (PERSS®) for Dilation-Balloon Expandable Coronary Stents”, Stainless Steels for Medical and Surgical Applications, ASTM STP 1438.
[20] M. Geetha, A. K. Singh, K. Muraleedharan, A. K. Gogia & R. Asokamani, “Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy”, J Alloys Compd, Vol. 329, pp. 214–23, 2001.
[21] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews & S. J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology, Vol. 122, pp. 73- 93, 1999.
[22] V. Cora, P. Monica, D. SilviuIulian, Osiceanu, M. Anastasescu & M. Jose CalderonMoreno, “Deposition and characterization of bioactive ceramic hydroxyapatite coating on surface of Ti–15Zr–5Nb alloy” Ceramics International, Vol. 40, pp. 14973–14982, 2014.
[23] Y L. Zhou, M. Niinomi, T. Akahori, H. Fukui & H. Toda, “Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications”, Mater Sci Eng, Vol. 398A, pp. 28–36, 2005.
[24] M. Geetha, U. Kamachi Mudali, R. Asokamani, B. Raj, “Corrosion and Microstructural Aspects of Titanium and its Alloys as Orthopaedic Devices”, Corros Rev, pp. 2–3, 2003.
_||_