ساخت و مشخصه یابی داربست تیتانیومی متخلخل پوشش داده شده با آکرمانیت
محورهای موضوعی : متالورژی پودرمسعود ارسطویی 1 , علی دوست محمدی 2
1 - دانشجوی کارشناسی ارشد، گروه مهندسی پزشکی- مهندسی بافت، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد
2 - استادیار، گروه مهندسی مواد، دانشکده فنی مهندسی، - دانشگاه شهرکرد، شهرکرد، ایران
کلید واژه: مهندسی بافت, زیست سازگاری, زیست فعالی, داربست تیتانیومی, آکرمانیت,
چکیده مقاله :
هدف از این پژوهش، ساخت و مشخصه یابی داربست تیتانیومی پوشش داده شده با آکرمانیت برای استفاده در مهنـــــدسی بافت استخوان می باشد؛ به منظور ساخت داربست تیتانیومی، پودر تیتانیوم اولیه را با ذرات عوامل فضــاساز (کلرید سدیم) تهیه و همچنیـن پوشش آکرمانیت به روش سل- ژل تهیه و بر روی داربست اعمال شد؛ سپس پوشش سنتز شـده به روش سل- ژل بر روی سطح داربست تیتانیومی قرار گرفت؛ داربســت های پوشش داده شده بعد از عملیات حرارتی توسط میکروسکوپ الکترونی روبشـی (SEM) و طیف سنجی توزیــــع انرژی پرتو ایکس (EDX) بررسی شدند؛ برای ارزیابی زیست فعالی از مایع شبیه سازی شده بدن (SBF) استفاده شـــد و تصاویر میکروســــکوپ الکترونی روبشی از سطح داربست تیتانیومی بدون پوشش و داربست تیتانیومی پوشـش داده شده با آکرمــــانیت را پس از 21 و14-7-3 روز غوطه وری در محلول شبیــه سازی شده بدن (SBF) تهیه شد؛ آنالیز پراش پرتو ایکس (XRD) وجود پیک های فاز آکرمانیت را در پوشش تایید کرد؛ طبق نتایج به دســــت آمده، ایجاد یک پوشش آکرمانیت می تواند زیست فعالی سطح داربســت تیتانیومی را افزایش دهد و نتیجه گیری نهایی این پژوهش نشان می دهد داربست تیتانیومی پوشش داده شده با آکرمانیت گزینه مناسبی برای استفاده در مهندسی بافت استخوان خواهد بود.
This work aimed at manufacturing and characterizing of titanium scaffolds which is coated with Akermanite for using in bone tissue engineering. In order to creating titanium scaffolds, the primary titanium powder was prepared with spacer particle elements (sodium chloride). Akermanite coating was prepared through sol-gel method and applied on the scaffold. The prepared structure was evaluated using scanning electron microscopy (SEM). Coated scaffolds were evaluated after heat treatment by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In terms of assessing the bioactivity of titanium scaffolds, the samples were immersed in simulated body fluid (SBF). Scanning electron microscopy images of the uncoated and coated titanium scaffolds was prepared after 3,7,14 and 21 days immersing in simulated body fluid (SBF); X-Ray Diffraction analysis (XRD) confirmed the peaks of Akermanite phase in coated samples. According to the results, our study showed that coating of Akermanite on Ti scaffold can increase the bioactivity of titanium scaffolds. The final conclusion of this study confirmed that titanium scaffolds coating with Akermanite will be a suitable and useful choice in bone tissue engineering.
[1] S. J. Hollister,“Porous scaffold design for tissue engineeringˮ, Nature materials, pp. 518-524, 2005.
[2] F. Witte, “The history of biodegradable magnesium implants”, A review, Acta Biomaterialia, Vol. 6, pp. 1680-1692, 2012.
[3] G. Ryan, A. Pandit & D. P. Apatsidis, “Fabrication methods of porous metals for use in orthopedic applications”, Biomaterials, Vol. 27, pp. 2651–2670, 2006.
[4] ع. سعادت، ع. ا. بهنام قادر، س. کرباسی، م. رادمهر، م. صادقی و م. ر. فروغی، "تهیه و ارزیابی ساختاری داربست نانوکامپوزیتیPHB/nHA مورد استفاده در مهندسی بافت استخوان"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 1، صفحه 23-11، بهار 1391.
[5] م. ر. فروغی، س. کرباسی، ر. ابراهیمی کهریزسنگی و ع. سعادت، "ارزیابی خواص فیزیکی داربست کامپوزیت نانوکریستال هیدروکسیآپاتیت/ پلیهیدروکسیبوتیرات برای کاربرد در مهندسی بافت استخوان"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد" شماره 2، صفحه60-51، تابستان 1391.
[6] N. Jha, D.P.Mondal, J. DuttaMajumdar, A. Badkul, A. K. Jha & A. K. Khare, “Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route”, Materials and Design, Vol. 47, pp. 810–819, 2013.
[7] C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina & M. Mabuchi, “Processing and Mechanical Properties of Autogenous Titanium Implant Materials”, Journal of Material Science: Material in Medicine, Vol. 3, pp. 397–401, 2002.
[8] ش. حسینی، ش. میردامادی و ع. نعمتی، "بررسی ریز ساختار، خواص مکانیکی و رفتار خوردگی داربست متخلخل Ti6Al4V جهت کاربرد ایمپلنت دندانی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 9، صفحه 43-31، 1394.
[9] A. Saadat, A. A. Behnamghader, S. Karbasi, D. Abedi, M. Seleymani & A. Shafiee, “Comparison of acellurar and Cellular Bioactivity of poly 3-hydroxybutyrate/hydroxyapatite Nanocomposite and Poly 3-hydroxybutyrate Scaffolds”, Biotechnology and Bioprocess Enginnering, Vol. 18, pp. 587-593, 2013.
[10] R. I. M. Asri, W. S. W. Harun, M. A. Hassan, S. A. C. Ghani & Z. Buyong, “A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 57, pp. 95-108, 2016.
[11] H. Sun, C. Wu, K. Dai, J. Chang & T. Tang, “Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics”, Biomaterials, Vol. 27, pp. 5651–5657, 2006.
[12] Y. Huang, X. Jin, X. Zhang, H. Sun, J. Tu, T. Tang, J. Chang & K. Dai, “In vitro and in vivo evaluation of akermanite bioceramics for bone regenerationˮ, Biomaterials, Vol. 30, pp. 5041–5048, 2009.
_||_