بررسی تاثیر متغیرهای تولید بر رسانایی الکتریکی و ریزسختی آلیاژ نانوکریستالی Cu-5 at. %Ta
محورهای موضوعی : متالورژی پودرروح اله رحمانی فرد 1 * , محسن اسدی اسد آباد 2 , سید میثم جاویدان 3
1 - دانشگاه علم و صنعت ایران، دانشکده فناوری های نوین، عضو هیات علمی
2 - پژوهشگاه علوم و فنون هسته ای، پژوهشکده مواد
3 - دانشگاه علم و صنعت ایران، دانشکده فناوری های نوین
کلید واژه: آلیاژسازی مکانیکی, تفجوشی, آلیاژ نانوکریستالی Cu-Ta, رسانایی الکتریکی, ریزسختی,
چکیده مقاله :
در پژوهش حاضر از روش آلیاژسازی مکانیکی برای تولید آلیاژهای نانوکریستالی Cu-5 at. % Ta استفاده شد. به منظور دستیابی به نمونه های با خواص مطلوب اثر تغییر اندازه گلوله های آسیا، اتمسفر و دمای تف جوشی بر ریزساختار، رسانایی الکتریکی و ریزسختی نمونه فوق مورد بررسی قرار گرفتند. بررسی های ریزساختاری از دو شرایط گلوله های به قطر 10 میلی متر و مخلوطی از گلوله های 10 و 5 میلیمتری نشان داد که نمونه ی آسیاشده با استفاده از گلوله های مخلوط، متوسط اندازه کریستالیت ریزتری دارد. پس از آسیاکاری، روش پرس سرد و تف جوشی در کوره در اتمسفرهای نیتروژن، آرگون و خلأ در دمای ℃550 انجام شد، نمونه های تف جوشی شده در شرایط خلأ مجموعه خواص بهتری را از خود نشان دادند. به منظور بررسی اثر دمای تف جوشی بر خواص محصول دماهای 700 و ℃850 نیز در شرایط خلأ مورد بررسی قرار گرفتند، نتایج نشان دادکه نمونه ی تف جوشی شده در دمای ℃850 بیشترین میزان رسانایی الکتریکی و ریزسختی را دارد. درمجموع نمونه ی آسیاشده با گلوله های مخلوط و تف جوشی شده در دمای ℃850 در شرایط خلأ میزان رسانایی الکتریکی برابر IACS %7/15 و ریزسختی HV 2/196 را نشان داد که بیشترین میزان رسانایی الکتریکی و ریزسختی در بین نمونه های مس- تانتالم تولیدشده در این پژوهش بود.
At the present study, the mechanical alloying method was used to produce the nanocrystalline Cu-5Ta alloy. In order to achieve a specimen with desirable properties, effects of size of milling ball, atmosphere and temperature of sintering were investigated on crystalline structure, electrical conduction and microhardness of specimen. The microstructural studies indicated that a finer crystallite size was attained when the complex size of milling balls being composed of 10 and 5 millimeters was applied rather than simple one of 10 millimeters. After milling, cold press and subsequent sintering were done under different atmospheres such as nitrogen, argon and vacuum at temperature of 550C. The sintered specimen under vacuum showed the better properties compared to the others. The further evaluations on specimen properties was conducted by sintering at temperatures of 700 and 850C under vacuum. The results indicated that with increasing the sintering temperature, electrical conduction and microhardness increase. Overall, the specimen milled by the complex ball size and sintered at temperature of 850C under vacuum experienced a electrical condition of 15.7% IACS and microhardness of 196.2 HV which was the best conditions to produce Cu5Ta.
[1] S. Mathur, S. S. Ray & T. Ohji, “Nanostructured Materials and Nanotechnology IV: Ceramicˮ, Engineering and Science Proceedings, Vol. 31, Wiley, 2010.
[2] C. Suryanarayana, “Mechanical alloying and millingˮ, Progress in Materials Science, Vol. 46, pp. 1-184, 2001.
[3] T. P. Yadav, R. M. Yadav & D. P. Singh, “Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocompositesˮ, Nanoscience and Nanotechnology, Vol. 2, pp. 22-48, 2012.
[4] د. داوودی، س. ا. ح. امامی و ع. سعیدی، "تولید و بررسی خواص مکانیکی پودر نانوکامپوزیت آلومینیم 7014/ آلومینا به روش آلیاژسازی مکانیکی"، فرایند های نوین در مهندسی مواد، دوره 9، شماره 4، صفحه 93-106، زمستان 1394.
[5] ا. احمدی، م. ملک زاده و س. خ. ا. صدرنژاد، " بررسی پارامترهای مؤثر بر سنتز نانوکامپوزیت تنگستن- مس به روش آسیابکاری مکانیکی و احیاء هیدروژنی"، فرایندهای نوین در مهندسی مواد، دوره 5، شماره 2، صفحه 27-34، تابستان 1390.
[6] M. a. Tschopp, H. a. Murdoch, L. J. Kecskes & K. a. Darling, “Bulk nanocrystalline metals: Review of the current state of the art and future opportunities for copper and copper alloysˮ, JOM, Vol. 66, pp. 1000-1019, 2014.
[7] H. Masuda, K. Higashitani & H. Yoshida, Powder Technology: CRC Press, 2007.
[8] J. S. Benjamin, “Dispersion strengthened superalloys by mechanical alloyingˮ, Metallurgical transactions, Vol. 1, pp. 2943-2951, 1970.
[9] M. S. El-Genk & J.-M. Tournier, “A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systemsˮ, Journal of Nuclear materials, Vol. 340, pp. 93-112, 2005.
[10] V. Rajković, O. Erić, D. Božić, M. Mitkov & E. Romhanji, “Characterization of dispersion strengthened copper with 3wt% Al2O3 by mechanical alloyingˮ, Science of Sintering, Vol. 36, pp. 205-211, 2004.
[11] J. P. Stobrawa & Z. M. Rdzawski, “Dispersion–strengthened nanocrystalline copperˮ, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 24, pp. 35-42, 2007.
[12] R. Rahmanifard, H. Farhangi & A. J. Novinrooz, “Optimization of mechanical alloying parameters in 12YWT ferritic steel nanocompositeˮ, Materials Science and Engineering, Vol. 527A, pp. 6853-6857, 2010.
[13] H. Bahmanpour, “Synthesis and Deformation Behavior of Nanocrystalline Copper Alloysˮ, PHD Thesis, North Carolina State University, 2012.
[14] C. Suryanarayana, E. Ivanov & V. V. Boldyrev, “The science and technology of mechanical alloyingˮ, Materials Science and Engineering, Vol. 304A, pp. 151-158, 2001.
[15] C. Suryanarayana & C. C. Koch, “Nanocrystalline materials - Current research and future directionsˮ, Hyperfine Interactions, Vol. 130, pp. 5-44, 2000.
[16] M. Gogebakan, C. Kursun & J. Eckert, “Formation of new Cu-based nanocrystalline powders by mechanical alloying techniqueˮ, Powder Technology, Vol. 247, pp. 172-177, 2013.
[17] T. Frolov, K. A. Darling, L. J. Kecskes & Y. Mishin, “Stabilization and strengthening of nanocrystalline copper by alloying with tantalumˮ, Acta Materialia, Vol. 60, pp. 2158-2168, 2012.
[18] K. A. Darling, A. J. Roberts, Y. Mishin, S. N. Mathaudhu & L. J. Kecskes, “Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalumˮ, Journal of Alloys and Compounds, Vol. 573, pp. 142-150, 2013.
[19] K. A. Darling, M. A. Tschopp, R. K. Guduru, W. H. Yin, Q. Wei & L. J. Kecskes, “Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusionˮ, Acta Materialia, Vol. 76, pp. 168-185, 2014.
[20] G. K. Williamson & W. H. Hall, “X-ray line broadening from filed aluminium and wolframˮ, Acta metallurgica, Vol. 1, pp. 22-31, 1953.
[21] Y. F. Zhang, L. Lu & S. M. Yap, “Prediction of the amount of PCA for mechanical millingˮ, Journal of Materials Processing Technology, Vol. 89, pp. 260-265, 1999.
[22] J. Xu, J. H. He & E. Ma, “Effect of milling temperature on mechanical alloying in the immiscible Cu-Ta systemˮ, Metallurgical and Materials Transactions, Vol. 28A, pp. 1569-1580, 1997.
[23] B. Hornbuckle, T. Rojhirunsakool, M. Rajagopalan, T. Alam, G. P. Pun, R. Banerjee & et al., “Effect of Ta Solute Concentration on the Microstructural Evolution in Immiscible Cu-Ta Alloysˮ, JOM, Vol. 67, pp. 2802-2809, 2015.
[24] T. Ungár, “Microstructural parameters from X-ray diffraction peak broadeningˮ, Scripta Materialia, Vol. 51, pp. 777-781, 2004.
[25] M. R. Vaezi, S. H. M. S. Ghassemi & A. Shokuhfar, “Effect of different sizes of balls on crystalline size, strain, and atomic diffusion on Cu-Fe nanocrystals produced by mechanical alloyingˮ, Journal of Theoretical and Applied Physics, Vol. 6, pp. 1-7, 2012.
[26] C. Aguilar, S. Ordonez, J. Marín, F. Castro & V. Martinez, “Study and methods of analysis of mechanically alloyed Cu–Mo powdersˮ, Materials Science and Engineering, Vol. 464A, pp. 288-294, 2007.
[27] K. Barmak, G. A. Lucadamo, C. Cabral Jr, C. Lavoie, J. M. E. Karper, “Dissociation of Dilute immiscible copper alloy thin filmˮ, Journal of Applied physics, Vol. 87, pp. 2204, 2000.
[28] T. Rojhirunsakool, K. A. Darling, M. A. Tschopp, G. P. P. Pun, Y. Mishin, R. Banerjee & et al., “Structure and thermal decomposition of a nanocrystalline mechanically alloyed supersaturated Cu–Ta solid solutionˮ, MRS Communications, Vol. 5, pp. 333-339, 2015.
[29] S. T. Zhang, Q. Wang, T. T. Liu & J. J. Liu, “Controlling crystallization process and thermal stability of a binary Cu–Zr bulk metallic glass via minor element additionˮ International Journal of Modern Physics, Vol. 29B, p. 1550178, 2015.
[30] E. Botcharova, J. Freudenberger & L. Schultz, “Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloysˮ, Acta materialia, Vol. 54, pp. 3333-3341, 2006.
[31] B. Long, R. Othman, M. Umemoto & H. Zuhailawati, “Spark plasma sintering of mechanically alloyed in situ copper–niobium carbide compositeˮ, Journal of Alloys and Compounds, Vol. 505, pp. 510-515, 2010.
[32] S. Kleiner, F. Bertocco, F. A. Khalid & O. Beffort, “Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al–TiO 2 systemˮ, Materials Chemistry and Physics, Vol. 89, pp. 362-366, 2005.
_||_