مطالعه تأثیر حساسشدن بر رفتارخوردگی فولاد زنگنزن دوپلکس SAF 2205 در ناحیه ترانسپسیو
محورهای موضوعی : خوردگی و حفاظت موادخشایار مرشدبهبهانی 1 , پوریا نجفی سیار 2 * , محمود پاکشیر 3
1 - دانشگاه شیراز
2 - دانشگاه شیراز
3 - دانشگاه شیراز
کلید واژه: فولاد زنگنزن دوپلکس SAF 2205, خوردگی بیندانهای, امپدانس الکتروشیمیایی,
چکیده مقاله :
در این پژوهش، رفتار خوردگی بین دانهای فولاد زنگنزن دوپلکس SAF 2205 در محلول "2 مولار اسید سولفوریک + 1 مولار اسید کلریدریک" در دمای oC 30 با استفاده از آزمونهای پلاریزاسیون پتانسیودینامیک، راکتیواسیون پتانسیوکینتیک الکتروشیمیایی دو حلقهای (DLEPR)، تفرق اشعهایکس و طیفسنجی امپدانس الکتروشیمیایی (EIS) مورد بررسی قرار گرفت. طیفسنجی امپدانس الکتروشیمیایی، برای نمونههایی با درجات مختلفی از حساس شدن به مدت 1 و 5 ساعت در دمای oC 725، وجود سه رفتار متفاوت را در پتانسیل های مختلف ناحیه ترانس پسیو نشان داد. نتایج بررسی حاکی از کاهش مقاومت انتقال بار (Rct) و مقاومت پلاریزاسیون (RP) در اثر افزایش زمان حساسشدن میباشد و این نتایج با تصاویر میکروسکوپ نوری و الکترونی از سطح نمونههای خوردهشده همخوانی دارد.
In this study, intergranular corrosion (IGC) behaviour of SAF 2205 duplex stainless steels (DSS) was investigated in the "2M H2SO4 + 1M HCl" solution at 30 ◦C using potentiodynamic polarization, DLEPR, X-ray diffraction, electrochemical impedance spectroscopy (EIS) and cyclic polarization tests. The EIS test results of the specimens, with various degrees of sensitization for 1 h and 5 h at 725 oC, shows three different responses in the trans passive region depending on the applied DC bias. Moreover, the results indicate that the charge transfer and polarization resistance (Rct and RP) of the sensitized DSS specimens decrease as a result of increasing the sensitization time which is in accordance with the optical and SEM micrographs from the corroded samples surfaces.
[1] A. I. Munoz, J. G. A. Anton, J. L. Guinon & V. P. R. Herranz, “Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniquesˮ, Corrosion Science, Vol. 49, pp. 3200-3225, 2007.
[2] H. Sieurin, E. M. Westin, M. Liljas & R. Sandström, “Fracture Toughness of Welded Commercial Lean Duplex Stailess STEELSˮ, Welding in the World, Vol. 53, pp. R24-R33, 2009.
[3] K. Ravindranath & S. N. Malhotra, “The Influence of Aging on The Intergranular Corrosion OF 22 Chromium-5 Nickel Duplex Stainless STEELˮ, Corrosion Science, Vol. 37, pp. 121-132, 1995.
[4] K. L. Weng, H. R. Chen & J. R. Yang, “The low-temperature aging embrittlement in a 2205 duplex stainless steelˮ, Materials Science and Engineering, Vol. 379A, pp. 119-132, 2004.
[5] J. Gong, Y. M. Jiang, B. Deng, J. L. Xu, J. P. Hu & J. Li, “Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation methodˮ, Electrochimica Acta, Vol. 55 pp. 5077-5083, 2010.
[6] “Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steelsˮ, ASTM International, 2002.
[7] “Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steelsˮ, ASTM international, 1999.
[8] T. Amadou, C. Braham & H. Sidhom, “Double Loop Electrochemical Potentiokinetic Reactivation Test Optimization in Checking of Duplex Stainless Steel Intergranular Corrosion Susceptibilityˮ, Metallrgical and Materials Transactions, Vol. 35A, pp. 3499-3513, 2004.
[9] G. H. Aydogdu & M. K. Aydinol, “Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steelˮ, Corrosion Science, Vol. 48, pp. 3565-3583, 2006.
[10] B. Deng, Y. Jiang, J. Xu, T. Sun, J. Gao, L. Zhang, W. Zhang and J. Li, "Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101", Corrosion Science, Vol. 52 pp. 969-977, 2010.
[11] M. E. Arıkan, R. Arıkan & M. Doruk, “Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical ReactivationMethodˮ, International Journal of Corrosion, Vol. Article ID 651829, 2012.
[12] A. Arutunow & K. Darowicki, “DEIS evaluation of the relative effective surface area of AISI 304 stainless steel dissolution process in conditions of intergranular corrosionˮ, Electrochimica Acta, Vol. 54, pp. 1034-1041, 2009.
[13] A. Arutunow, K. Darowicki & A. Z. ski, “Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steelˮ, Electrochimica Acta, Vol. 56, pp. 2372-2377, 2011.
[14] K. Morshed Behbahani, M. Pakshir & S. Matin, Advanced Processes in Materials, Vol. 8, pp. 61-71, 2014.
[15] Z. J. Jia, C. W. Du, C. T. Li, Z. Yi & X. G. Li, “Study on pitting process of 316L stainless steel by means of staircase potential electrochemical impedance spectroscopyˮ, nternational Journal of Minerals, Metallurgy and Materials, Vol. 18, pp. 48-52, 2011.
[16] J. Hou, G. Zhu, J. Xu & H. Liu, “Anticorrosion Performance of Epoxy Coatings Containing Small Amount of Inherently Conducting PEDOT/PSS on Hull Steel in Seawaterˮ, Journal of Materials Science & Technology, Vol. 29, pp. 678-684, 2013.
[17] S. M. Bhola, S. Kundu, R. Bhola, B. Mishra & S. Chatterjee, “Electrochemical Study of Diffusion Bonded Joints between Micro-duplex Stainless Steel and Ti6Al4V Alloyˮ, Journal of Materials Science & Technology, Vol. 30, pp. 163-171, 2014.
[18] R. K. Gupta, K. Mensah-Darkwa & D. Kumar, “Corrosion Protective Conversion Coatings on Magnesium Disks Using a Hydrothermal Techniqueˮ, Journal of Materials Science & Technology, Vol. 30, pp. 47-53, 2014.
[19] M. Pakshir, R. Medhat & K. Morshed Behbahani, Advanced Processes in Materials, Vol. 9, pp. 1-8, 2015.
[20] R. Chaves, I. Costa, H. G. D. Melo & S. Wolynec, “Evaluation of selective corrosion in UNS S31803 duplex stainless steel with electrochemical impedance spectroscopyˮ, Electrochimica Acta, Vol. 51, pp. 1842-1846, 2006.
[21] “Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steelsˮ, ASTM International, 2003.
[22] K. Morshed Behbahani & M. Pakshir, “Effect of Different Degrees of Sensitization on the EIS Response of 316L and 316 SS in Transpassive Regionˮ, Journal of Materials Engineering and Performance, Vol. 23, pp. 2283-2292, 2014.
[23] K. Morshed Behbahani, M. Pakshir, Z. Abbasi & P. Najafisayar, “Damage mechanism at different transpassive potentials of solution-annealed 316 and 316l stainless steelsˮ, International Journal of Minerals, Metallurgy, and Materials, Vol. 22, pp. 45-51, 2015.
[24] C. A. Huang, Y. Z. Chang & S. Chen, “The electrochemical behavior of austenitic stainless steel with different degrees of sensitization in the transpassive potential region in 1 MH 2 SO 4 containing chlorideˮ, Corrosion science, Vol. 46, pp. 1501-1513, 2004.
[25] H. Duan, Y. Li & C. Yan, “Electrochemical repairing of pitted 18-8 stainless steelˮ, Journal of Material Science, Vol. 40, pp. 2911-2917, 2005.
[26] M. Maleeva, A. Rybkina, A. Marshakov & V. Elkin, “The effect of atomic hydrogen on the anodic dissolution of iron in a sulfate electrolyte studied with impedance spectroscopyˮ, Protection of Metals, Vol. 44, pp. 548-556, 2008.
_||_