بررسی اثرات بازدارندگی خوردگی دو مشتق تیازولی برآلیاژ فولاد در اسید کلریدریک
محورهای موضوعی : خوردگی و حفاظت موادایمان دانایی 1 , علیرضا حسین زاده 2 , محمدحسین مداحی 3
1 - دانشگاه صنعت نفت آبادان
2 - کارشناسی ارشد، دانشکده نفت آبادان
3 - مربی، دانشگاه صنعت نفت، دانشکده نفت آبادان
کلید واژه: طیف سنجی امپدانس الکتروشیمیایی, بازدارندگی, خوردگی, مشتقات تیازولی, پلاریزاسیون,
چکیده مقاله :
درصنایع محلول های اسیدی به طور گسترده برای اسید شویی، جرم گیری، اسیدی کردن چاههای نفت و از بین بردن آلودگیهای سطحی به کار می روند. روش حفاظتی مطلوب استفاده از ممانعت کننده های خوردگی سازگار با محیط زیست میباشد. در تحقیق ارائه شده، توانایی بازدارندگی 2- مرکاپتوبنزوتیازول (MBT) و 2- آمینو5- نیتروتیازول (Nitramine) (دو مشتق تیازولی) در برابر خوردگی فولاد AISI 4130 در محیط 1 مولار اسید کلریدریک ارزیابی شد. برای این منظور از روش های پلاریزاسیون تافل (Tafel) و طیف سنجی امپدانس الکتروشیمیایی (EIS) استفاده شد. مطالعات پلاریزاسیون نشان داد که MBT سرعت دو واکنش کاتدی و آندی و Nitramine سرعت واکنش آندی را از طریق جذب شیمیایی روی سطح و مسدود کردن سایت های فعال خوردگی کاهش می دهند. مدار معادل استخراج شده از داده های آزمایش EIS نشان داد که باافزایش غلظت بازدارنده، مقاومت انتقال بار در فولاد افزایش و ظرفیت خازن های دو لایه کاهش یافت. پارامترهای ترمودینامیکی مانند آنتالپی، آنتروپی و انرژی آزاد جذب محاسبه شد ومیکروسکوپ نیروی اتمی (AFM) برای مشاهده ی سطح فولاد در غیاب ودر حضوربازدارنده ها مورد استفاده قرار گرفت.
In most industrial processes, acidic solution are commonly used for the pickling, industrial acid cleaning, acid descaling, oil well acidifying, etc. Corrosion prevention systems favor the use of corrosion inhibitors with low or zero environmental impacts. In this work, the inhibition ability of 2-Mercaptobenzothiazole (MBT) and 2-amino-5-nitrothiazole (Nitramine) (two thiazole derivatives) against the corrosion of AISI steel 4130 in 1 M HCl solution were evaluated by polarization and electrochemical impedance spectroscopy (EIS). Polarization studies indicated that MBT retards both the cathodic and anodic reaction and Nitramine retards anodic reaction through chemical adsorption and blocking the active corrosion sites. EIS data was analyzed to equivalent circuit model shows that as the inhibitor concentration increased the charge transfer resistance of steel increased whilst double layer capacitance decreased. Thermodynamic parameters such as activation energy, enthalpy, entropy and free energy of adsorption were calculated and Atomic force microscopy (AFM) was used to study the steel surface with and without inhibitors.
[1] Ostovari, S. M. Hoseinieh, M. Peikari, S. R. Shadizadeh & S. J. Hashemi, “Corrosion inhibition of mild steel in 1M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, a-D-Glucose and Tannic acid)”, Corros. Sci., Vol. 51, pp. 1935-1949, 2009.
[2] A. R. El-Sayed, H. S. Mohran & H. M. Abd El-Lateef, “The inhibition effect of 2, 4, 6-tris (2-pyridyl) -1, 3, 5-triazine on corrosion of tin, indium and tin-indium alloys in hydrochloric acid solution”, Corros. Sci., Vol. 52, pp. 1976-1984, 2010.
[3] M. Finsgar, S. Fassbender, F. Nicolini & I. Milosev, “Polyethy leneimine as corrosion inhibitor for ASTM 420 stainless steel in near–neutral saline media”, Corros. Sci., Vol. 51, pp. 525-533, 2009.
[4] N. A. Negm, F. M. Ghuiba & S. M. Tawfik, “Novel isoxazolium cationic Schiff base compounds as corrosion inhibitors for carbon steel in hydrochloric acid”, Int. J. Electrochem. Sci., Vol. 53, pp. 3566-3575, 2011.
[5] Danaee & S. Noori, “Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode”, Int. J. hydrogen energy, Vol. 36, pp. 12102-12111, 2011.
[6] J. R. Macdonald, “Note on the parameterization of the constant-phase admittance element”, Solid State Ion., Vol. 13, pp. 147-149, 1984.
[7] M. Behpour, S. M. Ghoreishi, N. Soltani & M. Salavati-Niasari, “The inhibitive effect of some bis-N, S-bidentate Schiff bases on corrosion behavior of 304 stainless steel in hydrochloric acid solution”, Corros. Sci., Vol. 51, pp. 1073-1802, 2009.
[8] R. Narayan, “An Introduction to Metallic Corrosion and it Prevention”, IBH Publishing Co. Oxford, 1983.
[9] M. Stern & A. L. Geary, “polarization: I. A theoretical analysis of the shape of polarization curves”, J. Electrochem. Soc., Vol. 104, pp. 56–63, 1957.
[10] M. A. Migahed & I. F. Nassar, “Corrosion inhibition of tubing steel during acidization of oil and gas wells”, Electrochim. Acta, Vol. 53, pp. 2877-2882, 2008.
[11] M. A. Amin, S. S. Abd El-Rehim, E. E. F. El-Sherbini & R. S. Bayyomi, “The Inhibition of Low Carbon Steel Corrosion in Hydrochloric Acid Solutions by Succinic Acid. Part 1. Weight Loss. Polarization, EIS, PZC, EDX and SEM Studies”, Electrochim. Acta, Vol. 52, pp. 3588-3600, 2007.
[12] N. Labjar, M. Lebrini, F. Bentiss, N. E. Chihib, S. El Hajjaji & C. Jama, “Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methíylenephosphonic) acid”, Mater. Chem. Phys., Vol. 119, pp. 330-336, 2010.
[13] M. A. Veloz & I. Gon´ zalez, “Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S”, Electrochim. Acta, Vol. 48, pp. 135-144, 2002.
[14] E. M. Sherif & S. M. Park, “Effects of 1,4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions”, Electrochim. Acta, Vol. 51, pp. 1313-1321, 2006.
[15] Danaee, M. Jafarian, F. Forouzandeh, F. Gobal & M. G. Mahjani, “Kinetic interpretation of a negative time constant impedance of glucose electrooxidation”, J. Phys. Chem. B, Vol. 112, pp. 15933-15940, 2008.
[16] Danaee, “Kinetics and mechanism of palladium electrodeposition on graphite electrode by impedance and noise measurements”, J. Electroanal. Chem., Vol. 662, pp. 415-420, 2011.
[17] M. Lebrini, M. Lagrenée, H. Vezin, M. Traisnel & F. Bentiss, “Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds”, Corros. Sci., Vol. 49, pp. 2254-2269, 2007.
[18] C. H. Hsu & F. Mansfeld, “Concerning the conversion of the constant phase element parameter Y0 into a capacitance”, Corrosion, Vol. 57, pp. 747-748, 2001.
[19] S. Tamil Sevil, V. Raman & N.Rajendran, “Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium”, J. Appl. Electrochem., Vol. 33, pp. 1175-1182, 2003.
[20] M. Outirite, M. Lagrenee, M. Lebrini, M. Traisnel, C. Jama, H. Vezin & F. Bentiss, “AC impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution”, Electrochim. Acta, Vol. 55, pp. 1670-1681, 2010.
[21] F. Betiss, M. Lebrini & M. Lagrenee, “Thermodynamic characterization of metal dissolution and inhibitor adsorption process in mild steel/5-bis(n-thienyl)-1.3.4-thiazoles/hydrocholoric acid system”, Corros. Sci., Vol. 47, pp. 2915-2931, 2005.
[22] Ghanbari, M. M. Attar & M. Mahdavian, “Corrosion inhibition performance of three imidazole derivatives on mild steel in 1 M phosphoric acid”, Mater. Chem. Phys., Vol. 124, pp. 1205-1209, 2010.
[23] S. P. Cardoso, F. A. Reis, F. C. Massapust, J. F. Costa, L. S. Tebaldi, L. F. L. Araújo, M. V. A. Silva, T. S. Oliveira, J. A. C. P. Gomes & E. Hollauer, “Evaluation of diverse indicators use as corrosion inhibitors”, Quim. Nova, Vol. 28, pp. 756-760, 2005.
[24] R. Solmaz, G. Kardas, M. Çulha, B. Yazici & M. Erbil, “Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media”, Electrochimica Acta, Vol. 53, pp. 5941-5952, 2008.
[25] G. Avci, “Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5M HCl”, Colloids and Surfaces A: Physicochemical and Engineering Aspect, Vol. 317, pp. 730-736, 2008.
[26] S. P. Cardoso, F. A. Reis, F. C. Massapust, J. F. Costa, L. S. Tebaldi, L. F. L. Araújo, M. V. A. Silva, T. S. Oliveira, J. A. C. P. Gomes & E. Hollauer: Quim. Nova, Vol. 28, pp. 756, 2005.
[27] S. Martinez & I. Stern, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system”, Appl. Surf. Sci., Vol. 199, pp. 83-89, 2002.
[28] E. E. Ebenso & I. B. Obot, “Inhibitive Properties, Thermodynamic Characterization and Quantum Chemical Studies of Secnidazole on Mild Steel Corrosion in Acidic Medium”, Int. J. Electrochem. Sci., Vol. 5, pp. 2012-2035, 2010.
[29] E. A. Noor, “Temperature effects on mild steel acidic corrosion in the absence and presence of aqueous extract for fenugreek leave”, Int. J. Electrochem. Sci., Vol. 2, pp. 996-1017, 2007.
[30] F. Bentiss, M. Lebrini & M. Lagrenée, “Thermodynamic characterisation of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochroric acid system”, Corros. Sci., Vol. 47, pp. 2915-2931, 2005.
[31] E. A. Noor & A. H. Al-Moubaraki, “Thermodynamic study of Metal Corrosion and Inhibitor Adsorption Processes in Mild Steel/1-Methyl - 4 [ 4' (-X) - Styryl Pyridinium Iodides/Hydrochloric Acid Systems”, Mater. Chem. Phys., Vol. 110, pp. 145-154, 2008.
_||_