Thermal Buckling Analysis of Circular FGM Plate with Actuator/Actuator Piezoelectric Layer Based on Neutral Plane
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringمحمد مهدی نجفی زاده 1 * , محسن مالمراد 2 , آرش شریفی 3
1 - دانشیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد اراک
2 - کارشناس ارشد مهندسی مکانیک، اداره کل استاندارد و تحقیقات صنعتی استان کرمانشاه
3 - کارشناس ارشد مهندسی مکانیک، شرکت نفت کرمانشاه
Keywords: Circular plate, FGM, : Thermal buckling, Piezoelectric layers,
Abstract :
In this paper, the thermal buckling analysis of a circular plate made of FGM materials with actuator/actuator piezoelectric layers based on neutral plane, classical plate theory and first order shear deformation plate theory is investigated. Reddy's model is assumed for material properties of FGM plate. Plate under the thermal loading, nonlinear temperature rise through the thickness and clamped edges is considered. Equilibrium and stability equations are drived using the calculus of variations and applying Euler equations. The obtained results are compared with the numerical values of the critical buckling temperature based on the theories mentioned above, and good agreement is observed between them.
[1] Koizumi.M. , Niino.M. , Miyamoto.Y, FGM research programs in Japan-from structural to Functional uses. Functionally Graded Materials, 1996-1997, pp 1-8.
[2] Samsam Shariat B.A., Eslami M.R., Buckling of thick functionally graded plates under mechanical and thermal loads, Composite Structurs, 78, 2007, pp. 433-439.
[3] Zhong H., GuC., Buckling of symmetrical
cross-ply composite rectangular plates under a linearly varying in-plane load, Composite Structures ,80, 2007, pp. 42-48.
[4] Batra. R.C, Wei Z., Dynamic buckling of a thin thermoviscoplastic rectangular plate, Thin-Walled Structures, 43, 2, 2005, pp. 273-290.
[5] Eslami M.R., Mossavarali A., Peydaye Saheli G., Thermoelastic buckling of Isotropic and Orthotropic Plates with Imperfections, Journal Of Thermal Stresses, 23, 9, 2000, pp. 853-872.
[6] Najafizadeh. M.M., Eslami.M.R., First-Order-Theory-Based Thermoelastic Stability of Functionally Graded Material Circular Plates, AIAA Journal, 40, 7, 2002, pp 1444-1450.
[7] Najafizadeh. M.M., Eslami M.R., Buckling Analysis of Circular Plates of Functionally Graded Materials under Uniform Radial compression, International Journal of Mechanical Science, Volume 44, Issue 12, 2002, pp. 2479-2493.
[8] Javaheri.R, Eslami.M.R, Thermal Bucking of Functionally Graded Plates, AIAA Journal, 40, 1, 2002, pp 162-169.
[9] Javaheri.R., Eslami M.R., Bucking of Functionally Graded Plates under in–plane Compressive Loading, ZAMM-Journal of Applied Mathematics, 82, 4, 2002, pp. 277-283.
[10] Javaheri R., Eslami M.R., Thermal Bucking of Functionally Graded Plates Based on Higher Order Theory, Journal of thermal Stresses, 25, 7, 2002, pp. 603-625.
[11] Najafizadeh M.M., Heydari H.R., Thermal Buckling of Functionally Graded Circular Plates Based on Higher Order Shear Deformation Plate Theory, European Journal of Mechanics-A/Solids, 23, 6, 2004, pp. 1085-1100.
[12] Najafizadeh M.M., Heydari H.R., An Exact Solution For Buckling of Functionally Graded Circular Plates Based on Higher Order Shear Deformation Plates Theory Under Uniform Radial Compression, International Journal of Mechanical Sciences, 50, 3, 2008, pp. 603-612.
[13] Ma L.S., Wang T.J., Nonlinear Bending and Post-buckling of a Functionally Graded Circular Plates under Mechanical and Thermal Loading, International Journal of Solids and Structures, 40, 13-14, 2003, pp. 3311-3330.
[14] Tiersten. H.F., Linear Piezoelctric Plate Vibration, Plenum Press, Newyork, 1969.
[15] Reddy J.N., Phan N.D., Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher-Order Shear Deformation Theory, Journal Of Sound and Vibration, 98, 2, 1985, pp. 157-170.
[16] Aldraihem.O.J, Khdeir.A.A, Exact deflection solutions of Beams With Shear Piezoelectric Actuators, International Journal of Solids and Structures, 40, 1, 2003, pp. 1-12.
[17] Wang Z., Chen S.H., Han W., The Static Shape Control for Intelligent Structures, Journal of Finite Element in Analysis and Design, 26, 4, 1997, pp. 303-314.
[18] Robbins D.H., Reddy J.N., Analysis of a Piezoelectrically Actuated Beams using a Layer-Wise Displacement Theory, Computers & Structures, 41, 2, 1991, pp. 265-279.
[19] MorimotoT., Tanigawa Y., Kawamura R., Thermal Buckling of Functionally Graded Rectangular Plates Subjected to Partial Heating, International Journal of Mechanical Sciences, 48, 9, 2006, pp. 926-937.
[20] Viliani N.S., Khalili S.M.R., Porrostami H., Buckling Analysis of FG Plate with Smart Sensor/Actuator, Journal of Solid Mechanical, 1, 3, 2009, pp. 201-212.
[21] Lien. W.C., Chung. Y.L., Ching C.W., Dynamic Stability Analysis and Control of a Composite Beam with Piezoelectric Layers, Composite Structures, 56, 2002, pp. 97-109.
[22] Halliday H., Resnick R., Walker J., Fundamentals of Physics, Wiley, New York, Extended Sixth Edition, 2000.
[23] Brush D.O., Almorth. B.O., Buckling of
Bars-Plate and shells, McGraw Hill , New York, 1975.
[24] Meyers. C.A, Hyer. M.W., Thermal Buckling and Postbuckling of Symmetrically Laminated Composite Plates, Journal of Thermal Stresses, Colume, 14, 4, 1999, pp. 519-540.