تاثیر مقادیرمختلف اسید سالیسیلیک و دفعات مصرف آن بر افزایش تحمل به کم آبی در انجیر دیم استهبان
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیرامین بابادائی سامانی 1 * , علیرضا جاوید 2 , مجید شعبانی 3
1 - گروه علوم باغبانی، واحد استهبان، دانشگاه آزاد اسلامی، استهبان، ایران
2 - گروه علوم باغبانی، واحد استهبان، دانشگاه آزاد اسلامی، استهبان، ایران
3 - گروه علوم باغبانی، واحد استهبان، دانشگاه آزاد اسلامی، استهبان، ایران
کلید واژه: عملکرد, پرولین, نشت یونی, کلروفیل, کاروتنوئید,
چکیده مقاله :
امروزه استفاده از اسید سالیسیلیک به عنوان یکی از مواد تنظیم کننده رشد گیاهی به منظور افزایش مقاومت گیاهان در برابر تنشهایی همچون تنش خشکی رو به رشد است. این تحقیق به منظور بررسی تاثیر مقادیر مختلف اسید سالیسیلیک و دفعات مصرف آن بر افزایش تحمل به کم آبی درختان انجیر دیم استهبان با مطالعه برخی ویژگیهای فیزیولوژیکی و مورفولوژیکی و عملکرد اجرا گردید. آزمایش به صورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی در سه تکرار انجام گرفت. اسید سالیسیلیک در 4 سطح )صفر، 5/0، 1 و 5/1 میلیمولار( و تعداد دفعات محلولپاشی در سه سطح (یک، دو و سه بار به فواصل 3 هفته از یکدیگر)، فاکتورهای مورد بررسی در این پژوهش بودند. اولین محلولپاشی اسید سالیسیلیک سه هفته پس از بر دادن درختان بود. نتایج نشان داد که استفاده از اسید سالیسیلیک در سه غلظت اعمال شده باعث افزایش معنیدار محتوای کلروفیل a، کلروفیل b، کلروفیل کل، کاروتنوئید، آب نسبی برگ، پرولین و مقدار عملکرد گردید و میزان نشت یونی سلول را کاهش داد. استفاده از این ترکیب هیچگونه تاثیر معنیدار بر رشد طولی شاخه و میانگین سطح برگ نداشت. همچنین اثر دفعات مصرف اسید سالیسیلیک بر میزان کلروفیل a، کلروفیل کل و نشت یونی معنیدار بود ولی هیچگونه تاثیر معنیدار بر سایر صفات مورد بررسی نداشت. بر اساس نتایج بدست آمده از این تحقیق اسید سالیسیلیک با بهبود برخی ویژگیهای فیزیولوژیک حساس به شرایط کم آبی و تنش خشکی باعث افزایش تحمل درختان انجیر دیم به شرایط کم آبی گردید.
Today, the use of salicylic acid as one of plant growth regulator substances is a common way to increase plant resistance to stresses such as drought. This experiment was conducted in order to determine the effects of different concentration and different application number of salicylic acid on some morphological and physiological characteristics of fig in rain-fed conditions of Estahban region. Investigation was performed as factorial based on a randomized complete block design (CRBD) with three replications. The studied factors included salicylic acid in four levels (0, 0.5, 1 and 1.5 mM) and different number of foliar sparying in three levels (one, two and three times in three week intervals). The first foliar application of salicylic acid was carried out three weeks after caprification of trees. The parameters such as chlorophyll, carotenoids, proline, ion leakage, average leaf area, shoot growth, relative water content (RWC) and yield were measured. The results showed that the use of salicylic acid increased chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, relative water content, proline and yield, but, decreased ion leakage of the fig cv. "Sabz". Application of this compound did not significantly affect on shoot growth and leaf area. The effect of application number of salicylic acid on chlorophyll a, total chlorophyll and ion leakage was significant, but, had no significant effect on other traits. Generally, results indicated that application of salicylic acid significantly improved physiological characteristics and drought tolerance of fig in rain-fed conditions.
فقیه، ح. و ج. ثابت سروستانی.1380. انجیر کاشت داشت برداشت. انتشارات راهگشا. 292 ص.
گلدانی،م. و م.کمالی . 1389. تاثیر پراکسیدهیدروژن برتنش کم آبی در گیاهان تکمهای (Gomphrena globosa L.)وتاج خروس زینتی(Amaranthus tricolor L.). فن آوری تولیدات گیاهی ،جلد10،شماره2،صفحه:81-65.
خرمشاهی، ل. 1391. اثر محلول تیوفر و سالیسیلیک اسید بر مقاومت به سرمای بهاره درختان گردو. دانشگاه بوعلی سینا ، همدان ، پایان نامه کارشناسی ارشد.
مردانی، ح. بیات، ح. عزیزی، م. 1390. تاثیر محلول پاشی سالیسیلیک اسید بر خصوصیات مورفولوژیک و فیزیولوژیک دانهال های خیارتحت شرایط تنش خشکی. نشریه علوم باغبانی علوم و صنایع کشاورزی. شماره25:3. 236-230
میارصادقی س. 1383. تاثیر پرایمینگ سالیسیلیک اسید بر برخی خصوصیات مرفولوژیک و فیزیولوژیک کلزا تحت تنش خشکی. پایان نامه کارشناسی ارشد زراعت. دانشکده کشاورزی دانشگاه زنجان.
Arnon, D. T. 1949. Copper enzymes in isolation chloroplast phenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15.
Ashraf, M. Y., A. R. Azim, A. H. Khan, and S. A. Ala. 1994. Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat (Triticum aestivum L.). Acta physiol. Plant. 16: 185- 191.
Bandurska, H, and A. Stroinski. 2005. The effect of salicylic acid on barley response to water deficit. Acta Physiol. Plant. 27: 379-386.
Bates I.S., R.P. Waldern and I.D. Tear.1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56: 1159-1168.
Borsani O, V. Valpuesta, M. A. Botella. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant physiol. 126: 1024-1030.
Costa, M., P. M. Civell, A. R. Chaves and G. A. Martinez. 2005. Effects of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20°C. Post harvest Biol. Technol. 35: 191-199.
Delany T.P., S. Uknes, B. Vernooij, L. Friedrich, K. Weymann, D. Negrotto, T. Gaffney, M. Gut-Rella, H. Kessmann, E. Ward and J. Ryals 1994. A central role of salicylic acid in plant disease resistance. Science. 266: 1247- 1250.
El-Khallal, S.M., T.A. Hathout, A.A. Ashour and A.A. Kerrit. 2009. Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under saltstress. J. Agri.Biol. Sci. 5: 380- 390.
El-Tayeb, M. A. 2005. Response of barley grain to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 45: 215-225.
Eraslan F., A. Inal, A. Gunes and M. Alpaslan. 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Horticul. 113: 120-128.
Farooq, M., S.M.A. Basra, A. Wahid, N. Ahmad and B.A. Saleem. 2009. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J. Agron. Crop Sci. 195: 237-246.
Ghai, N., R.C. Setia and N. Setia. 2002 Effect of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphol. 52: 83-87.
Gutierrez-Coronado, M. A., C. Trejo-Lopez and A. Larqué-Saavedra.1998. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol. Biochem. 36: 653-665.
Hamada, A.M. and A.M.A. Al-Hakimi. 2001. Salicylic acid versus salinity-drought induced stress on wheat seedlings. Rostl. Vyro. 47: 444-450.
Hayat, S., Q. Fariduddin, B. Ali, and A. Ahmad. 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hung. 53: 433-437.
Heuer, B. 1994. Osmoregulatory role of proline in water-and salt-stressed plants. pp. 363-481. In: M. Pessarakli(Ed.), Handbook of plant and crop Stress. Marcel Dekker pub., New York.
Hsiao, T.C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. 24: 519-570.
Hunt, R. 1982. Plant growth curves. Edward Arnold Pub. Ltd. London. Britain.
Kaydan, D., M. Yagmur and N. Okut. 2007. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L. .( Tarim Bilimleri Dergisi, 13 (2): 114-119.
Khan, W., B. Prithviraj, and D. L. Smith. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant physiol. 160: 485-492.
Khodary, S. F. A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int. J. Agric. Biol. 6: 5-8.
Korkmaz, A., M. Uzunlu and A. R. Demirkiran. 2007. Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol. Plant. 29: 503-508.
Larque, S.A. 1979. Stomatal closure in response to acetalsalicylic acid treatment. Z. Pflanzenphysiol. 93: 371–5.
Lichtenthder, H. K. 1987. Chlorophyllus and carotenoids: Pigments of phorosynthetic biomembranes. Methods in Enzymology. 148: 350-382.
Liu, Y., J. Zhang, H. Liu and W. Huang. 2008. Salicylic acid or heat acclimation pre-treatmentenhances the plasma membrane-associated ATPase activities in young grape plants. Scientia Horticulturae, 119: 21-27.
Martin, H., and K. Holger. 2001. Soil organic matter in particle size fractions of a long term agricultural feild experiment receiving organic amendment. Soil. Sci. Soc. Am. J. 65:352-358.
Mohamed, A. and L. Ahmed. 2010. Response of wheat cultivars to drought and salicylic acid. Amer-Eurasian J. Agric. 3: 01-07.
Munne-Bosch, S., J. Penuelas. 2003. photo-and antioxidative protection, and a role for salicylic acid during drought and recovery in field- grown Phillyrea angutifolia plants. Planta. 217: 758-766.
Nakano, R. S. Inoue, Y. Kubo and A. Inaba. 2002. Water stress-induced ethylene in the calyx triggers autocatalytic ethylene production and fruit softening in ‘Tonewase’ persimmon grown in a heated plastic-house. Posth. Biol. Tech. 25: 293-300.
Popova, L., T. Pancheva and A. Uzunova. 1997. Salicylic acid: Properties, Biosynthesis and Physiological role. Plant Physiol. 23: 85- 93.
Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 439-46.
Senaratna, T., D. Merrit, K. Dixon, E. Bunn, D. Touchell and K. Sivasithamparam. 2003. Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regul. 39: 77-81.
Senaratna, T., D. Touchell, E. Bunn and K. Dixon. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plant. Plant Growth Regul. 30, 157–161.
Shakirova, F.M., A.R. Sakhabutdinova, M.V. Bozrutkova, R.A. Fatkhutdinova and D.R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164: 317-322.
Shakirova, F.M., M.V. Bezrukova. 1997. Induction of wheat resistance against environmental salinization by salicylic acid. Biology Bulletin, 24, 109–112.
Singh, B. and K. Usha. 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul. 39: 137-141.
Smartt, J. 1994. The groundnut crop. A scientific basis for imporovement. London. Chapman and Hall. pp: 734-735.
Stevens, J., T. Senaratna and K. Sivasithamparam. 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul. 49,77–83.
Wang, L.J. and H.L. Shao. 2006. Salicylic acid induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170: 685-69.
Woodson, W. R. and K. A. Lawton. 1988. Ethylene-induced gene expression in carnation petals. Plant Physiol. 87: 498-503.
_||_