Optimal use of photovoltaic systems in the distribution network considering the variable load and production profile of Kerman city
Subject Areas : Application of soft computing in engineering sciences
Fahimeh Sayadi Shahraki
1
,
Shaghayegh Bakhtiari Chehelcheshmeh
2
*
,
Alireza Zamani Nouri
3
1 - Department of Electrical Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
2 - Department of Computer Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
3 - Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
Keywords: Photovoltaic systems, Optimization, distribution network, power quality,
Abstract :
Photovoltaic systems are very important renewable energy sources, and optimal use of their active and reactive power capacity is very useful in improving the power quality of the distribution network. Therefore, it is necessary to determine the optimal location, number, and capacity of the solar system with appropriate optimization methods so that the maximum reduction in network losses is achieved while considering power quality constraints. Given the complexity and many limitations of the problem, the need to use an appropriate optimization method is evident. In this paper, using the P-PSO optimization algorithm, in the IEEE 33-bus test network, the location and capacity of the active and reactive power of the solar system are determined based on the variable load profile of the network and the daily production curve of the solar system in Kerman city to minimize losses and improve the voltage profile of the electrical energy distribution networks. To increase the accuracy of this optimization, each of the load and production curves is divided into three different levels, according to the geographical climate of Kerman city, in one year, and to evaluate the performance of the proposed method, the relevant results in four different scenarios are examined. The optimization results indicate a significant impact on improving power quality indicators in the presence of photovoltaic systems, especially when using the active and reactive power capacities of these units simultaneously.
[1] M. C. V. Suresh and E. J. Belwin, “Optimal DG placement for benefit maximization in distribution networks by using dragonfly algorithm,” Renewables Wind Water and Solar, vol. 5, pp. 2–8, 2018.
[2] T. D. Pham, T. T. Nguyen, and B. H. Dinh, “Find optimal capacity and location of distributed generation units in radial distribution networks by using enhanced coyote optimization algorithm,” Neural Computing & Applications, vol. 33, pp. 4343–4371, 2021.
[3] A. Rathore and N. P. Patidar, “Optimal sizing and allocation of renewable based distribution generation with gravity energy storage considering stochastic nature using particle swarm optimization in radial distribution network,” Journal of Energy Storage, vol. 35, p. 102282, 2021.
[4] P. C. Chen, V. Malbasa, Y. Dong, and M. Kezunovic, “Sensitivity analysis of voltage sag-based fault location with distributed generation,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 2098–2106, 2015.
[5] M. Kashyap, A. Mittal, and S. Kansal, “Optimal placement of distributed generation using genetic algorithm approach,” Lecture Notes in Electrical Engineering, vol. 476, pp. 587–597, 2019.
[6] S. R. Ramavat, S. P. Jaiswal, N. Goel, and V. Shrivastava, “Optimal location and sizing of DG in the distribution system and its cost-benefit analysis,” Advances in Intelligent Systems and Computing, vol. 698, pp. 103–112, 2019.
[7] T. S Tawfeek, A. H. Ahmed, and S. Hasan, “Analytical and particle swarm optimization algorithms for optimal allocation of four different distributed generation types in radial distribution networks,” Energy Procedia, vol. 153, pp. 86–94, 2018.
[8] S. Mirsaeidi, S. Li, S. Devkota et al., “Reinforcement of power system performance through optimal allotment of distributed generators using metaheuristic optimization algorithms,” Journal of Electrical Engineering & Technology, vol. 17, no. 5, pp. 2617–2630, 2022.
[9] Adeagbo, A.; Olaniyi, E.; Ofoegbu, E.; Abolarin, A. Solar photo-voltaic system efficiency improvement using unitary-axis active tracking system. Int. J. Sci. Eng. Res. 2020, 11, 502–508.
[10] Adewuyi, O.B.; Ahmadi, M.; Olaniyi, I.O.; Senjyu, T.; Olowu, T.O.; Mandal, P. Voltage security-constrained optimal generation rescheduling for available transfer capacity enhancement in deregulated electricity markets. Energies 2019, 12, 4371.
[11] Hemeida MG, Ibrahim AA, Mohamed AA, et al. Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO). Ain Shams Eng J, 2021, 12:609–619.
[12] Shradha SinghPariharNitinMalik, Analysing the impact of optimally allocated solar PV-based DG in harmonics polluted distribution network, Sustainable Energy Technologies and Assessments Volume 49, February 2022.
[13] Abou El-Ela AA, El-Sehiemy RA, Abbas AS. Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm. IEEE Syst J, 2018, 12:3629-3636.
[14] Varaprasad Janamala, K Radha Rani, Optimal allocation of solar photovoltaic distributed generation in electrical distribution networks using Archimedes optimization algorithm Clean Energy, Volume 6, Issue 2, April 2022, Pages 271–287.
[15] G. Guerra, J. a Martinez, and S. Member, “A Monte Carlo Method for Optimum Placement of Photovoltaic Generation Using a Multicore Computing Environment,” PES Gen. Meet. Conf. Expo. 2014 IEEE. IEEE, pp. 1–5, 2014.
[16] Fahimeh Sayadi, Saeid Esmaeili, Farshid Keynia, Two-layer volt/var/total harmonic distortion control in distribution network based on PVs output and load forecast errors, IET Generation, Transmission & Distribution, Volume 11,2016.
[17] Fahimeh Sayadi, Saeid Esmaeili, Farshid Keynia, Feeder reconfiguration and capacitor allocation in the presence of non-linear loads using new P-PSO algorithm, IET Generation, Transmission & Distribution, Volume 10, 2015.
[18] Calderaro V, Conio G, Galdi V, Massa G, Piccolo A. Optimal decentralized voltage control for distribution systems with inverter-based distributed generators. IEEE Trans Power Syst 2014; 29:230–41.
|
Journal of Optimization in Soft Computing (JOSC) Vol. 2, Issue 4, pp: (56-65), Winter-2024 Journal homepage: https://sanad.iau.ir/journal/josc |
|
Paper Type (Research paper)
Optimal use of photovoltaic systems in the distribution network considering the variable load and production profile of Kerman city
Fahimeh Sayadi Shahraki1, Shaghayegh Bakhtiari Chehelcheshmeh2* and Alireza Zamani nouri3
1. Department of Electrical Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
2. Department of Computer Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
3. Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
Article Info |
| Abstract |
Article History: Received: 2025/01/01 Revised: 2025/03/15 Accepted: 2025/04/05
DOI: |
| Photovoltaic systems are very important renewable energy sources, and optimal use of their active and reactive power capacity is very useful in improving the power quality of the distribution network. Therefore, it is necessary to determine the optimal location, number, and capacity of the solar system with appropriate optimization methods so that the maximum reduction in network losses is achieved while considering power quality constraints. Given the complexity and many limitations of the problem, the need to use an appropriate optimization method is evident. In this paper, using the P-PSO optimization algorithm, in the IEEE 33-bus test network, the location and capacity of the active and reactive power of the solar system are determined based on the variable load profile of the network and the daily production curve of the solar system in Kerman city to minimize losses and improve the voltage profile of the electrical energy distribution networks. To increase the accuracy of this optimization, each of the load and production curves is divided into three different levels, according to the geographical climate of Kerman city, in one year, and to evaluate the performance of the proposed method, the relevant results in four different scenarios are examined. The optimization results indicate a significant impact on improving power quality indicators in the presence of photovoltaic systems, especially when using the active and reactive power capacities of these units simultaneously. |
Keywords: Photovoltaic systems, Optimization, distribution network, power quality |
| |
*Corresponding Author’s Email Address: sh.bakhtiari@iaushk.ac.ir |
1. Introduction
Increasing air pollution and shortage of fuel for fossil power plants in the world have led to an increasing interest in clean and renewable sources. On the other hand, the electrical energy distribution network has faced an increasing load demand, which highlights the need to use local production sources. Solar or photovoltaic systems are among the renewable distributed generation sources that include various advantages such as environmental compatibility, flexibility, reliability, and economic benefits [1]. So far, many studies have been conducted on the connection of distributed generation to the distribution network, and many countries are turning to these sources due to the environmental, economic, and reliability benefits of these systems [2]. Research shows that the way of use, type, capacity, and installation location of these sources are very important in their efficiency in improving the conditions of the distribution system and power quality parameters [3]. Failure to use properly and improper determination of the capacity and installation location of these sources can even lead to a decrease in power quality in the distribution network [4]. In [5-8], the location of distributed generation in the distribution network has been carried out based on various optimization algorithms to reduce losses. The objective function in [5-6] is to reduce losses and costs of distributed generation units. In reference [6], in addition to power losses and installation costs of distributed generation sources, the cost of air pollution is also included in the objective function. In [7-8], power quality constraints have also been evaluated in the process of installing and operating new and renewable energy sources, and the optimal location of distributed generation sources has been carried out by an optimization problem. Although the load and generation profiles of all distributed generation sources in both studies are considered constant in the distribution network. In [9], the effective use of solar systems in a distribution network that is faced with an increase in demand has been investigated. The active power generation capacity has been calculated using environmental conditions, but the reactive power capacity of these sources has not been used. In [10], recommendations and guidelines for the location and capacity of solar system installation in the existing network have been provided for power companies. Given the complexity of the optimization problem in many past studies, this problem has been modeled with various optimization methods, and researchers have tried to optimize their response using newer and more effective optimization methods and considering more constraints [11-13]. In [11], the optimization of the location of distributed generation units is proposed using improved optimization techniques, and finally, the efficiency of the proposed method compared to traditional methods has been shown.
In [12], the optimal placement of distributed generation was carried out by considering high harmonic loads in the network, and the harmonic distortion index was also stated as one of the constraints of the problem. The goal of optimization is to improve the power quality indicators in the system, and only the active power capacity of photovoltaic systems was used. In [14], the capacity and location of solar distributed generation were optimized. To limit the search space, the sensitive buses of the system were initially determined through sensitivity analysis. The load change profile and the production rate of the solar system were not considered in the presented model. In the reviewed studies, the load profile of the network and the production of distributed sources were not considered, but in some studies such as [15], the information on the consumed load in 24 hours and the average active power produced by the solar system were used to determine the optimal location and capacity of the solar system to reduce losses and reduce voltage deviation.
A review of previous studies reveals the following weaknesses:
1- In studies of the use of distributed generation sources from the point of view of the power quality of the distribution network, the use of the average load profile and the average production power of hypothetical distributed generation systems is completely unattainable, and naturally, due to the variability of the load profile and production, the use of the results in practice will not be very effective.
2- In some distributed generation sources, including photovoltaic systems, it is possible to use reactive power capacity if accurately modeled and the available range is determined, which has often been ignored in previous studies.
In the present study, to determine the installation location and the required active and reactive power utilization capacity of photovoltaic sources, the change in the actual annual load profile in Kerman has been considered along with accurate information on the active power production rate of the existing solar system in Kerman. The leveling method takes into account different levels of annual load and production, and as a result of the intersection of these levels, all different load and production level states are extracted, and optimization is carried out based on all levels to reduce losses and network voltage deviation. The answer to the optimization problem is the active and reactive power capacity and the location of the solar system at each load level. Also, the grid voltage constraints, the active and reactive power capacity of the photovoltaic system, and the total power generated based on demand are also considered in solving the optimization problem.
The rest of the paper is organized as follows. In section 2 solution method consist of objective function and constraints formulations are presented. Section 3 Describes how to implement the proposed method of intersecting load and production levels and P-PSO method. Simulation scenarios and results are provided in section IV and section V discusses the results and concludes the paper.
2. Solution method
2.1. Objective function
The goal of optimization is to reduce active losses and maintain the bus voltage profile within the desired range. The objective function is defined as equation (1) which must be minimized. The weighting coefficients
and
are chosen between 0 and 1 and their sum is equal to one and shows the degree of influence of each objective function on the overall objective function.
(1) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(2)
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(3)
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(4)
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(5) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(6) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(7) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(8) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(9) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(10) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(11) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(12) |
|
|
|
3. Proposed intersection of load and production levels method and solving by P-PSO
To bring the results of the optimization problem closer to reality, changes in the load curve and solar system production should be included in the problem. In this paper, for more realistic results and to increase the optimization accuracy, changes in the load and production curve are considered in a one-year period. Since temperature changes in the seasons are the most important parameter affecting the load in the short term, the annual load curve of the Kerman city network is divided into three conditions: maximum, minimum, and intermediate temperatures, and as a result, load consumption. Kerman's peak load occurs in the summer season and the high load level occurs in this time period. In winter, due to the city's temperate geographical location and the major use of gas in heating devices, the amount of electricity used is low and the low load level occurs in this period. Finally, in the temperate seasons of autumn and spring, load consumption is considered as the medium load level. Accordingly, the load curve of Kerman city is divided into three low load, high load, and medium load levels in a year based on seasonal changes, as shown in Table 1. Also in Table 2, the active and reactive power capacity of the photovoltaic system is specified for each load level.
Table 1. Network load levels studied in one year
Load Levels | month of the year |
Low load | November, December, January, February |
Mid load | April, May, October, March |
High load | June, July, August, September |
Table 2. Active and reactive power of the photovoltaic system for each load level
Reactive power | Active power |
|
Q | P | Test network |
1.5Q | 0.3P | Low load |
0.5Q | 0.6P | Mid load |
Q | P | High load |
Table 3. Yearly leveling the solar system production curve
Load Level | months | Capacity factor percentage | Probability of occurrence per year | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Low load | August, November, December, January | 74% |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mid load | April, May, February, March | 90% |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
High load | June, July, September, October | 100% |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(13) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mid | Mid | High | High | Low | Low | Mid | High | Low | Load Level | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
High | Low | Mid | Low | Mid | High | Mid | High | Low | Generation Level | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 0 | 0 |
|
| 0 |
|
|
| Probability | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
October | Don’t occure | Don’t occure | August | February | Don’t occure | April May March | June July September | NovemberDecember January | Month | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0.6P | 0.6P | P | P | 0.3P | 0.3P | 00.6P | P | 0.3P | Active power | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0.5Q | 0.5Q | Q | Q | 1.5Q | 1.5Q | 0.5Q | Q | 1.5Q | Reactive power | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
100% | 74% | 90% | 74% | 90% | 100% | 90% | 100% | 74% | Capacity factor | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (15) | ||||||||
| (16) | ||||||||
| (20) | ||||||||
| (18) | ||||||||
Average voltage deviation |
| 6 | 5 | 4 | 3 | 2 | 1 | states |
Load factor | 0.3 | 0.6 | 1 | 0.3 | 0.6 | 1 | Scenario | |
Generation factor | 0.9 | 1 | 0.74 | 0.74 | 0.9 | 1 | ||
| V.D6 | V.D5 | V.D4 | V.D3 | V.D2 | V.D1 | ||
|
| - | 0.0599 | 0.0402 | 0.1338 | 0.0599 | 0.0402 | 1 |
0.1947 |
| 0.1579 | 0.0314 | 0.4052 | 0.2500 | 0.0652 | 0.2654 | 2 |
0.0541 |
| 0.0002 | 0.0036 | 0.0245 | 0.0021 | 0.0012 | 0.0077 | 3 |
0.0583 |
| 0.0105 | 0.18 | 0.1374 | 0.0114 | 0.0847 | 0.028 | 4 |
Table 6. Capacity and location of installed PV units
PV 4 | PV 3 | PV 2 | PV 1 |
| ||||
Capacity
| Location
| Capacity
| Location
| Capacity
| Location
| Capacity
| Location
|
|
P(kW) | P(kW) | P(kW) | P(kW) | |||||
Q(kVAR) | Q(kVAR) | Q(kVAR) | QkVAR | |||||
- | - | - | - | - | - | - |
- | 1 |
473.40 | 31 | 444.43 | 14 | 642.82 | 6 | 661.04 | 24 | 2 |
0 | 0 | 0 | 0 | |||||
631.72 | 24 | 439.78 | 7 | 451.3 | 14 | 576.7 | 30 | 3 |
388.59 | 391.38 | 288.56 | 759.21 | |||||
741.66 | 588.7 | 535.6 | 953.4 | |||||
448.11 329.59 | 14 | 516.43 966.1 | 30 | 649.20 535.63 | 6 | 670.63 480.81 | 24 | 4 |
Table 7. Power loss in four scenarios
PLOSSMID. | PLOSSave | Load 0.3 | 0.6 | 1 | 0.3 | 0.6 | 1 |
| |
Generation 0.9 | 1 | 0.74 | 0.74 | 0.9 | 1 | ||||
|
|
F6 |
F5 |
F4 |
F3
|
F2 | F1 |
| |
| - | 159.52 | 63.91 | 210.99 | 159.52 | 63.91 | 210.99 | 1 | |
| 0.5355
| 0.9575 | 0.286 | 0.475
| 0.9186
| 0.2688 | 0.3816 | 2 | |
|
0.1888 |
0.2655
|
0.1987
|
0.2099
|
0.3074
|
0.1289
| 0.0941 | 3 | |
0.1124 | 0.2136 | 0.1899 | 0.4232 | 0.1709 | 0.2188 | 0.2883 | 0.0858 | 4 | |
The results of Table 5 show that the optimal use of active and reactive power capacity can be effective in reducing voltage deviation. So scenario 3 shows the lowest voltage deviation. Table 6 shows the results of the capacity and location of installed PV units. To evaluate the results from the point of view of losses, Table 7 summarizes the results of the different objective functions and also reports the average losses. As can be seen in scenario 1, losses occur at the highest level and the use of the active power capacity of the photovoltaic system leads to a significant reduction in the level of power losses in the network. Also, comparing the results of the second and third scenarios shows the effect of using the reactive power capacity of the photovoltaic system in reducing losses. So at peak load, losses are reduced to about one-third. To see the effect of using the photovoltaic system, the voltage results of all buses at peak load in the first and third scenarios are shown in Figure 3. According to the figure, in the third scenario, due to the simultaneous use of the active and reactive power capacity of the solar system, the bus voltage deviation level is minimized. The results of Table 6 show that the use of reactive and active power capacity simultaneously with the proposed leveling method is effective in controlling the bus voltage deviation, reducing losses, and reducing system costs. To see the importance of using the proposed leveling method, the results of the third and fourth scenarios can be compared. As can be seen, the voltage deviation at peak load in the third scenario is about one-sixth of that in the fourth scenario, and the power losses in the third scenario are less than half of those in the fourth scenario.
These results reveal the importance of load and generation leveling according to climate in the use of distributed generation resources.
Figure 4 shows the convergence plot of the P-PSO method compared to PSO. Comparing the two plots reveals the optimization quality and escape from the local convergence of P-PSO.
Figure 4. Convergence diagram of P-PSO and PSO methods
5. Conclusion
In this paper, the location and capacity of the active and reactive power of the photovoltaic system in the distribution network were optimized based on the load leveling required and the generation capacity of the photovoltaic system. The aim of optimizing the voltage and reactive power control in the network under study was to reduce active power losses and bus voltage deviations as the main objectives. To use the leveling method, the actual load and generation profile of Kerman was used, and the results obtained indicate the importance of proper use of distributed generation resources and the advantage of using the reactive power capacity of these systems. Observation of the results shows that the use of the photovoltaic system leads to a profound reduction in active losses and bus voltage deviations in the system. However, using the reactive power capacity of these resources compensates the system voltage level more appropriately. Of course, it is necessary to consider the limitations of the active and reactive power generated by these distributed generation resources. Also, the use of the P-PSO optimization method shows the appropriate quality of optimization of this method and the escape from local convergence in complex problems. The results of the article show that the appropriate use of the leveling method in a distribution system with distributed generation resources will lead to improved results and achieve the goal of improving power quality in the network.
References
[1] M. C. V. Suresh and E. J. Belwin, “Optimal DG placement for benefit maximization in distribution networks by using dragonfly algorithm,” Renewables Wind Water and Solar, vol. 5, pp. 2–8, 2018.
[2] T. D. Pham, T. T. Nguyen, and B. H. Dinh, “Find optimal capacity and location of distributed generation units in radial distribution networks by using enhanced coyote optimization algorithm,” Neural Computing & Applications, vol. 33, pp. 4343–4371, 2021.
[3] A. Rathore and N. P. Patidar, “Optimal sizing and allocation of renewable based distribution generation with gravity energy storage considering stochastic nature using particle swarm optimization in radial distribution network,” Journal of Energy Storage, vol. 35, p. 102282, 2021.
[4] P. C. Chen, V. Malbasa, Y. Dong, and M. Kezunovic, “Sensitivity analysis of voltage sag-based fault location with distributed generation,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 2098–2106, 2015.
[5] M. Kashyap, A. Mittal, and S. Kansal, “Optimal placement of distributed generation using genetic algorithm approach,” Lecture Notes in Electrical Engineering, vol. 476, pp. 587–597, 2019.
[6] S. R. Ramavat, S. P. Jaiswal, N. Goel, and V. Shrivastava, “Optimal location and sizing of DG in the distribution system and its cost-benefit analysis,” Advances in Intelligent Systems and Computing, vol. 698, pp. 103–112, 2019.
[7] T. S Tawfeek, A. H. Ahmed, and S. Hasan, “Analytical and particle swarm optimization algorithms for optimal allocation of four different distributed generation types in radial distribution networks,” Energy Procedia, vol. 153, pp. 86–94, 2018.
[8] S. Mirsaeidi, S. Li, S. Devkota et al., “Reinforcement of power system performance through optimal allotment of distributed generators using metaheuristic optimization algorithms,” Journal of Electrical Engineering & Technology, vol. 17, no. 5, pp. 2617–2630, 2022.
[9] Adeagbo, A.; Olaniyi, E.; Ofoegbu, E.; Abolarin, A. Solar photo-voltaic system efficiency improvement using unitary-axis active tracking system. Int. J. Sci. Eng. Res. 2020, 11, 502–508.
[10] Adewuyi, O.B.; Ahmadi, M.; Olaniyi, I.O.; Senjyu, T.; Olowu, T.O.; Mandal, P. Voltage security-constrained optimal generation rescheduling for available transfer capacity enhancement in deregulated electricity markets. Energies 2019, 12, 4371.
[11] Hemeida MG, Ibrahim AA, Mohamed AA, et al. Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO). Ain Shams Eng J, 2021, 12:609–619.
[12] Shradha SinghPariharNitinMalik, Analysing the impact of optimally allocated solar PV-based DG in harmonics polluted distribution network, Sustainable Energy Technologies and Assessments Volume 49, February 2022.
[13] Abou El-Ela AA, El-Sehiemy RA, Abbas AS. Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm. IEEE Syst J, 2018, 12:3629-3636.
[14] Varaprasad Janamala, K Radha Rani, Optimal allocation of solar photovoltaic distributed generation in electrical distribution networks using Archimedes optimization algorithm Clean Energy, Volume 6, Issue 2, April 2022, Pages 271–287.
[15] G. Guerra, J. a Martinez, and S. Member, “A Monte Carlo Method for Optimum Placement of Photovoltaic Generation Using a Multicore Computing Environment,” PES Gen. Meet. Conf. Expo. 2014 IEEE. IEEE, pp. 1–5, 2014.
[16] Fahimeh Sayadi, Saeid Esmaeili, Farshid Keynia, Two-layer volt/var/total harmonic distortion control in distribution network based on PVs output and load forecast errors, IET Generation, Transmission & Distribution, Volume 11,2016.
[17] Fahimeh Sayadi, Saeid Esmaeili, Farshid Keynia, Feeder reconfiguration and capacitor allocation in the presence of non-linear loads using new P-PSO algorithm, IET Generation, Transmission & Distribution, Volume 10, 2015.
[18] Calderaro V, Conio G, Galdi V, Massa G, Piccolo A. Optimal decentralized voltage control for distribution systems with inverter-based distributed generators. IEEE Trans Power Syst 2014; 29:230–41.
[19] Van den Bergh, F., Engelbrecht, A., A Cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation: 225-239, 2004.
Related articles
-
Mathematical modeling for relocation of terminal facilities in location problems
Print Date : 2025-06-30
The rights to this website are owned by the Raimag Press Management System.
Copyright © 2021-2025