افزایش جوانهزنی Habenaria janellehayneana (Orchidaceae): بررسی روشهای غیرهمزیستی و همزیستی
محورهای موضوعی : مجله گیاهان زینتیثیرا توماوونگسا 1 , چاتاپوند موزیموندو 2 , سانتی واتانا 3 , استفان گیل 4 , راتاکت چویکلین 5 , نطاووت ویریاتاناودی وونگ 6 , نودوان موانگسان 7 *
1 - گروه زیست شناسی، دانشکده علوم و فناوری، دانشگاه ناخون راچاسیما راجبهات، ناخون راچاسیما، تایلند
2 - دانشکده زیست شناسی، موسسه علوم، دانشگاه صنعتی سوراناری، ناخون راچاسیما، تایلند
3 - دانشکده زیست شناسی، موسسه علوم، دانشگاه صنعتی سوراناری، ناخون راچاسیما، تایلند
4 - مزرعه و باغ گیاه شناسی کادوری، جاده لام کام، تای پو، هنگ کنگ اس.آر.، چین
5 - بیوبانک ملی تایلند (NBT)، آژانس ملی توسعه علم و فناوری (NSTDA)، پارک علمی تایلند، جاده فاهولیوتین، کلونگ لوانگ، پاثومتانی، تایلند
6 - بیوبانک ملی تایلند (NBT)، آژانس ملی توسعه علم و فناوری (NSTDA)، پارک علمی تایلند، جاده فاهولیوتین، کلونگ لوانگ، پاثومتانی، تایلند
7 - دانشکده زیست شناسی، موسسه علوم، دانشگاه صنعتی سوراناری، ناخون راچاسیما، تایلند
کلید واژه: Micropropagation, Mycorrhiza, Ornamental plant, Terrestrial Orchids,
چکیده مقاله :
Habenaria janellehayneana Choltco, Moloney, & Yong Gee (Orchidaceae) is a lithophytic orchid with striking pink flowers that is endemic to Phitsanulok Province, northern Thailand. Only a few populations of this species are found in Phu Hin Rong Kla National Park. To maintain rare plant species in ex situ collections thereby preventing extinctions, along with the aim of mass propagation for ornamental reasons, it is crucial that suitable propagation methods are developed. In this paper, we describe protocols for the asymbiotic and symbiotic germination of H. janellehayneiana. Of the four growing media tested, germination percentages were greatest on ½ VW (18.97%), followed by ½ MS (14.20%), MS (12.46%), and VW (11.93%) at 16 weeks, and protocorm development was most advanced (stage 4) within 10 weeks. Of the three plant growth regulators tested, including 6-benzylaminopurine (BAP), gibberellic acid (GA), and thidiazuron (TDZ), at 0, 1, 3, and 5 mg/L concentrations, 1 mg/L BAP significantly enhanced seed germination (p <0.05) when compared to the control (8.47%). For symbiotic seed germination, two non-mycorrhizal endophytic fungi isolates of the genera Aspergillus and Colletotrichum increased seed germination by 14.03% and 11.00% respectively, when compared to the control (6.15%). These findings demonstrate that it is possible to germinate the seeds of H. janellehayneana via both asymbiotic and symbiotic method, with a symbiotic approach providing the best outcomes, and this could assist in the conservation of this and other rare terrestrial orchids, as well as increase their value in the ornamental market.
Habenaria janellehayneana Choltco, Moloney, & Yong Gee (Orchidaceae) is a lithophytic orchid with striking pink flowers that is endemic to Phitsanulok Province, northern Thailand. Only a few populations of this species are found in Phu Hin Rong Kla National Park. To maintain rare plant species in ex situ collections thereby preventing extinctions, along with the aim of mass propagation for ornamental reasons, it is crucial that suitable propagation methods are developed. In this paper, we describe protocols for the asymbiotic and symbiotic germination of H. janellehayneiana. Of the four growing media tested, germination percentages were greatest on ½ VW (18.97%), followed by ½ MS (14.20%), MS (12.46%), and VW (11.93%) at 16 weeks, and protocorm development was most advanced (stage 4) within 10 weeks. Of the three plant growth regulators tested, including 6-benzylaminopurine (BAP), gibberellic acid (GA), and thidiazuron (TDZ), at 0, 1, 3, and 5 mg/L concentrations, 1 mg/L BAP significantly enhanced seed germination (P <0.05) when compared to the control (8.47%). For symbiotic seed germination, two non-mycorrhizal endophytic fungi isolates of the genera Aspergillus and Colletotrichum increased seed germination by 14.03% and 11.00% respectively, when compared to the control (6.15%). These findings demonstrate that it is possible to germinate the seeds of H. janellehayneana via both asymbiotic and symbiotic method, with a symbiotic approach providing the best outcomes, and this could assist in the conservation of this and other rare terrestrial orchids, as well as increase their value in the ornamental market.
Abebe, Z., Mengesha, A., Teressa, A. and Tefera, W. 2009. Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. African Journal of Biotechnology, 8 (24): 6817-6821.
Ackerman, J.D., Phillips, R.D., Tremblay, R.L., Karremans, A., Reiter, N., Peter, C.I., Bogarín, D., Pérez-Escobar, O.A. and Liu, H. 2023. Beyond the various contrivances by which orchids are pollinated: Global patterns in orchid pollination biology. Botanical Journal of the Linnean Society, boac082. https://doi.org/10.1093/botlinnean/boac082
Almanza-Álvarez, J., Garibay-Orijel, R., Salgado-Garciglia, R., Fernández-Pavía, S.P., Lappe-Olivera, P., Arellano-Torres, E. and Ávila-Díaz, I. 2017. Identification and control of pathogenic fungi in neotropical valued orchids (Laelia spp.). Tropical Plant Pathology, 42: 339–351.
Alomía,Y.A., Mosquera-E, A.T., Flanagan, N.S. and Otero, J. 2017. Seed viability and symbiotic seed germination in Vanilla spp. (Orchidaceae). Research Journal of Seed Science, 10: 43–52.
Alomía, Y.A., Otero, J., Jersáková, J. and Stevenson, P.R. 2022. Cultivable fungal community associated with the tropical orchid Dichaea andina. Fungal Ecology, 57–58: https://doi.org/10.1016/j.funeco.2022.101158
Altschul, S.F., Madden, T.L., Shaffer, A.A., Zhang, J., Zhang, Z., Miller, M. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25: 3389-3402.
Arditti, J. and Ghani, A.K.A. 2000. Erratum: Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, 145: 367-421. https://doi.org/10.1046/j.1469-8137.2000.00675.x
Batista, J.A., Borges, K.S., de Faria, M.W., Proite, K., Ramalho, A.J., Salazar, G.A. and van den Berg, C. 2013. Molecular phylogenetics of the species rich genus Habenaria (Orchidaceae) in the new world based on nuclear and plastid DNA sequences. Molecular Phylogenetics and Evolution, 67(1): 95-109. https://doi.org/10.1016/j.ympev.2013.01.008
Carbone, I. and Kohn, L.M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91: 553–556.
Chen, X.M., Dong, H.L., Hu, K.X., Sun, Z.R., Chen, J. and Guo, S.X. 2010. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. Journal of Plant Growth Regulation, 29: 328-337.
Choltco, T.C., Moloney, B. and Yong Gee, G. 2017. A new Habenaria from northern Thailand (Subfamily: Orchidoideae Tribe: Orchideae Subtribe: Orchidinae). Orchideen Journal, 4-5: 1-4.
Christenhusz, M.J.M. and Byng, J.W. 2016. The number of known plants species in the world and its annual increase. Phytotaxa, 261 (3): 201-217. Doi:10.11646/phytotaxa.261.3.1
Chutima, R., Dell, B., Vessabutr, S., Bussaban, B. and Lumyong, S. 2011. Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza, 21: 221–229.
Cig, A., Demiler Durak, E. and Işler, S. 2018. In vitro symbiotic germination potentials of some Anacamptis, Dactylorhiza, Orchis and Ophrys terrestrial orchid species. Applied Ecology and Environmental Research, 16: 5141-5155. DOI:10.15666/aeer/1604_51415155
Fay, M.F. 1992. Conservation of rare and endangered plants using in vitro methods. In Vitro Cellular & Developmental Biology. Plant, 28P(1): 1–4. http://www.jstor.org/stable/20064802
Fay, M.F. 2018. Orchid conservation: How can we meet the challenges in the twenty-first century?. Botanical Studies, 59: 16. https://doi.org/10.1186/s40529-018-0232-z
Gale, S.W., Fischer, G.A., Cribb, P.J. and Fay, M.F. 2018. Orchid conservation: Bridging the gap between science and practice. Botanical Journal of the Linnean Society, 186: 425–434.
Gardes, M. and Bruns, T.D. 2013. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2: 113–118.
Glass, L.N. and Donaldson, G.C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from Filamentous ascomycetes. American Society of Microbiology, 61: 1320–1330.
Govaerts, R., Dransfield, J., Zona, S., Hodel, D.R. and Henderson, A. 2019. World checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; Retrieved from http://wcsp.science.kew.org/ Accessed on 05-06-2022.
Guerber, J.C.; Liu, B.; Correll, J.C. and Johnston, P.R. 2003. Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia, 95: 872–895.
Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98.
International Cooperation and Cooperation Group Wildlife and Wild Flora Protection Division. 2013. CITES Conserved Plants (CITES): Wild Orchids in the Eastern Forest Part 1 under the Convention Department of National Parks, Wildlife and Plant Conservation; Edited [by] Arporn Udomsilp, Bangkok.
Keel, B.G., Zettler, L.W. and Kaplin, B.A. 2011. Seed germination of Habenaria repens (Orchidaceae) in situ beyond its range, and its potential for assisted migration imposed by climate change. Castanea, 76 (1): 43–54.
Khamchatra, N., Dixon, K.W., Tantiwiwat, S. and Piapukiew, J. 2016. Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedium villosum (Lindl.) Stein. from Thailand. South African Journal of Botany, 104: 76-81.
Lauzer, D., St-Arnaud, M. and Barabe, D. 1994. Tetrazolium staining and in vitro germination of mature seeds of Cypripedium acaule (Orchidaceae). Lindleyana, 9: 197-204.
Li, T., Yang, W., Wu, S., Selosse, M.A. and Gao, J. 2021. Progress and prospects of mycorrhizal fungal diversity in orchids. Frontiers in Plant Sciences, 12: 646325. https://doi.org/10.3389/fpls.2021.646325
Ma, X., Nontachaiyapoom, S., Jayawardena, R.S., Hyde, K.D., Gentekaki, E., Zhou, S., Qian, Y., Wen, T. and Kang, J. 2018. Endophytic Colletotrichum species from Dendrobium spp. in China and northern Thailand. MycoKeys, 43: 23-57. https://doi.org/10.3897/mycokeys.43.25081
Meng, Y.Y., Shao, S.C., Liu, S.J. and Gao, J.Y. 2019. Do the fungi associated with roots of adult plants support seed germination? A case study on Dendrobium exile (Orchidaceae). Global Ecology and Conservation, 17: e00584.
Mohanty, P., Paul, S., Das, M.C., Kumaria, S. and Tandon, P. 2012. A simple and efficient protocol for the mass propagation of Cymbidium mastersii: An ornamental orchid of Northeast India. AoB Plants, pls023. doi: 10.1093/aobpla/pls023
Murashige, T. and Skoog, F.A. 1962. Revised medium for rapid growth and bioassays with tobacco tissue 354 cultures. Physiologia Plantarum, 15: 473-497.
Neiland, M.R.M. and Wilcock, C.C. 1998. Fruit set, nectar reward, and rarity in the Orchidaceae. American Journal of Botany, 85(12): 1657–1671. https://doi.org/10.2307/2446499
Nongdam, P., Beleski, D.G., Tikendra, L., Dey, A., Varte, V., EL Merzougui, S., Pereira, V.M., Barros, P.R. and Vendrame, W.A. 2023. Orchid micropropagation using conventional semi-solid and temporary immersion systems: A review. Plants, 12(5): 1136. https://doi.org/10.3390/plants12051136
Paek, K.Y., Hahn, E.J. and Park, S.Y. 2011. Micropropagation of Phalaenopsis orchids via protocorms and protocorm-like bodies. In: Thorpe, T., Yeung, E. (eds) Plant Embryo Culture. Methods in Molecular Biology, 710. Humana Press. https://doi.org/10.1007/978-1-61737-988-8_20
Piyatrakul, P. 2014. Factors influencing germination and seedling development of Habenaria rhodocheila Hance. Thesis master’s degree. Chiang Mai University, Chiang Mai 171 p. (in Thai)
POWO. 2023. Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 01 June 2023.
Pridgeon, A. 2001. Genera Orchidacearum: Orchidoideae (part 1). Oxford University Press. 411 page.
Rasmussen, H.N., Dixon, K.W., Jersáková, J. and Těšitelová, T. 2015. Germination and seedling establishment in orchids: A complex of requirements. Annals of Botany, 116: 391–402. https://doi.org/10.1093/aob/mcv087
Sangmanee, P., Shutsrirung, A. and Potepohn, N. 2012. Effects of mycorrhizas on growth of terrestrial orchid Habenaria erichmichelii Christenson. Journal of Agriculture, 28(3): 237-244. (In Thai) http://cmuir.cmu.ac.th/jspui/handle/6653943832/64334
Sarsaiya, S., Jain, A., Jia, Q., Fan, X., Shu, F., Chen, Z., Zhou, Q., Shi, J. and Chen, J. 2020. Molecular identification of endophytic fungi and their pathogenicity evaluation against Dendrobium nobile and Dendrobium officinale. International Journal of Molecular Sciences, 21(1):316. https://doi.org/10.3390/ijms21010316
Setiaji, A., Annisa, R., Santoso, A.D., Kinasih, A. and Riyadi, A. 2021. Review: Factors affecting mass propagation of Vanda orchid in vitro. Cell biology and Development, 5 (2): 51-62. https://doi.org/10.13057/cellbioldev/v050201
Shah, S., Shrestha, R., Maharjan, S., Selosse, M.A. and Pant, B. 2018. Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants (Basel), 8(1): 5. doi: 10.3390/plants8010005
Sisti, L.S., Flores-Borges, D.N.A., de Andrade, S.A.L., Koehler, S., Bonatelli, M.L. and Mayer, J.L.S. 2019. The role of non-mycorrhizal fungi in germination of the mycoheterotrophic orchid Pogoniopsis schenckii Cogn. Frontiers in Plant Science, 10: 1589. doi: 10.3389/fpls.2019.01589
Sneh, B., Burpee, L. and Ogoshi, A. 1991. Identification of Rhizoctonia species. St. Paul, Minnesota: APS Press, pp. 2.
Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313. https://doi.org/10.1093/ bioinformatics/btu033
Stewart, S. and Kane, M. 2006a. Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell, Tissue and Organ Culture, 86: 159-167.
Stewart, S. and Kane, M. 2006b. Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell, Tissue and Organ Culture, 86: 147-158.
Stewart, S. and Kane, M. 2007. Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implication for species-level conservation. In Vitro Cellular and Developmental Biology, 43: 178-186.
Stewart, S.L. and Zettler, L.W. 2002. Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinqueseta, H. macroceratitis) from Florida. Aquatic Botany, 72(1): 25-35.
Swarts, N.D. and Dixon, K.W. 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany, 104 (3): 543-556. https://doi.org/10.1093/aob/mcp025
Tao, G., Liu, Z.Y., Liu, F., Gao, Y.H. and Cai, L. 2013. Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new species. Fungal Diversity, 61: 139–164. http://doi.org/10.1007/s13225-013-0254-5
Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: İmproving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22 (22): 4673-80. doi: 10.1093/nar/22.22.4673. PMID: 7984417; PMCID: PMC308517.
Thummavongsa, T., Watthana, S., Musimun, C. and Muangsan, N. 2022. Asymbiotic germination of Habenaria rhodocheila Hance on different culture media and impact of plant growth regulators. Asia-Pacific Journal of Science and Technology, 27(05): APST–27. https://doi.org/10.14456/apst.2022.82
Umata, H., Ota, Y., Gale, S. W., Chuman, S., Nishi, M., Ashihara, S. and Yagi, F. 2022. Spatial separation of mycobionts in the giant, differentiated root system of Cyrtosia septentrionalis, a fully myco-heterotrophic orchid. Botany, 100: 813–825.
Vacin, E.F. and Went, F.W. 1949. Some pH changes in nutrient solutions. Botanical Gazette, 110: 605- 356.
White, T., Bruns, T., Lee, S., Taylor, J., Innis, M., Gelfand, D. and Sninsky, J. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Academic Press: San Diego, CA, USA, 31: 315–322.
Yam, T. and Arditti, J. 2009. History of orchid propagation: A mirror of the history of biotechnology. Plant Biotechnology Reports, 3: 1-56. https://doi.org/10.1007/s11816-008-0066-3
Yeh, C.M., Chung, K., Liang, C.K. and Tsai, W.C. 2019. New insights into the symbiotic relationship between orchids and fungi. Applied Sciences, 9 (3): 585. https://doi.org/10.3390/app9030585
Zanello, C.A., Duarte, W.N., Gomes, D.M. and Cardoso, J.C. 2022. Micropropagation from inflorescence nodal segments of Phalaenopsis and acclimatization of plantlets using different substrates. Horticulturae, 8: 340. https://doi.org/10.3390/horticulturae8040340
Zeng, S., Huang, W., Wu, K., Zhang, J., da Silva, J.A. and Duan, J. 2016. In vitro propagation of Paphiopedilum orchids. Critical Reviews in Biotechnology, 36(3): 521-34. doi: 10.3109/07388551.2014.993585
Zhang, W. and Gao, J. 2021. A comparative study on the reproductive success of two rewarding Habenaria species (Orchidaceae) occurring in roadside verge habitats. BMC Plant Biology, 21(1): 187. https://doi.org/10.1186/s12870-021-02968-w
Zhu, G.S., Yu, Z.N., Gui, Y. and Liu, Z.Y. 2008. A novel technique for isolating orchid mycorrhizal fungi. Fungal Diversity, 33: 123-137.