Host Liquid Effect on Thermo-Optical Pattern of a Self-Phase Modulated Laser Beam Passing Through Au Nanoparticles Colloids
Subject Areas : Journal of Optoelectronical NanostructuresHoda Aleali 1 * , Ahmad Mehramiz 2 , Elham Valizadeh Pilehroud 3
1 - Department of metrology, Research Center of Quality Assessment and Management Systems, Standard Research Institute (SRI), Karaj, 3174734563, Iran
2 - Department of Physics, Faculty of Basic Sciences, Imam Khomeini International University, Qazvin, Iran
3 - Department of Physics, Faculty of Basic Sciences, Imam Khomeini International University, Qazvin, Iran
Keywords: Thermo-optical nonlinearity, Host liquid’s properties, Far-field intensity, Colloidal gold nanoparticles, Self-phase modulation, Photonic devices,
Abstract :
In this paper, the influence of host liquid’s properties on far-field intensity distribution of a continuous Gaussian laser beam passing through the synthesized colloidal gold nanoparticles (AuNPs) is experimentally and numerically studied considering the different form of heat transfer modes. Our results reveal that dispersed NPs in liquids with more viscosity or less thermal expansion coefficient, lead to more concentric far-field diffraction patterns. By changing the viscosity and thermal expansion coefficient, the form of diffraction patterns due to the convection effect, can dramatically change compared to the strength of the thermal nonlinear refraction. The effect of the linear absorption coefficient of the medium on diffraction patterns of the colloids is also investigated. It is shown that by increasing the linear absorption coefficient of the medium, the number of the rings and the beam divergence increase under exposure of the 532 nm laser beam. Our observations show the excellent sensitivity of the diffraction ring pattern technique to characterize the different modes of heat transfer and thermo-optical nonlinear properties of the NPs colloids.
[1] M. Arjomandi Lari, s. parhoodeh, G. Alahverdi, and A. Rohani Sarvestani. Investigation of optical and structural properties of iron oxide nanostructures synthesized by co-precipitation method. Journal of Optoelectronical Nanostructures., 7(3) (2022) 108-117. https://jopn.marvdasht.iau.ir/article_5339.html.
[2] M. Cheraghizade. Optoelectronic Properties of PbS Films: Effect of Carrier Gas. Journal of Optoelectronical Nanostructures., 4(2) (2019) 1-12. https://jopn.marvdasht.iau.ir/article_3474.html.
[3] M. A. Zekavat Fetrat, M. Sabaeian, and G. Solookinejad. The effect of ambient temperature on the linear and nonlinear optical properties of truncated pyramidal-shaped InAs/GaAs quantum dot. Journal of Optoelectronical Nanostructures., 6 (3) (2021) 81- 92. https://jopn.marvdasht.iau.ir/article_4980.html .
[4] Hossein Bahramiyan, and Somayeh Bagheri. Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect. Journal of Optoelectronical Nanostructures., 3 (3) (2018) 79- 100. https://jopn.marvdasht.iau.ir/article_3047.html.
[5] O. bahrami, and A. Baharvand. Nonlinear Optical Effects in One Dimensional Multi-layer Structure Consisting of Polar Ferroelectric Called LiTaO3. Journal of Optoelectronical Nanostructures., 6(1) (2021) 21-34. https://jopn.marvdasht.iau.ir/article_4539.html.
[6] M. S. Ribeiro, K. C. Ribeiro, V. M. Lenart, R. F. Turchiello, and S. L. Gómez, PVP-Capped Gold Nanoparticles: Thermal Nonlinear Refraction Probed by Spatial Self-Phase Modulation. physica status solidi a., 219 (2022) 2100600. https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.202100600.
[7] A. Akouibaa, R. Masrour, A. Jabar, M. Benhamou, M. Ouarch, and A. Derouiche. Study of the Optical and Thermoplasmonics Properties of Gold Nanoparticle Embedded in Al2O3 Matrix. Plasmonics., 17 (2022) 1157–1169. https://link.springer.com/article/10.1007/s11468-022-01607-w.
[8] C. Chen, K. Wang, and L. Luo. AuNPs and 2D functional nanomaterial-assisted SPR development for the cancer detection: a critical review. Cancer Nanotechnology., 13 (2022) 29. https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-022-00138-7.
[9] M. T. Pambudi et al., Localized surface plasmon effect on 3-mercaptopropionic acid and citrate stabilized gold nanoparticles for biosensor application. Journal of Nonlinear Optical Physics & Materials., 31(04) (2022) 2350004. https://www.worldscientific.com/doi/10.1142/S0218863523500042.
[10] L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour. Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone. physica status solidi (a)., 207(10) (2010) 2303-2310. https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201026021.
[11] H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour. Thermo-optical properties of colloids enhanced by gold nanoparticles. Japanese Journal of Applied Physics., 49(8R) (2010) 085002. https://iopscience.iop.org/article/10.1143/JJAP.49.085002.
[12] R. F. Souza, M. A. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, Nonlinear optical properties of Au nanoparticles colloidal system: local and nonlocal responses. Applied Physics Letters., 92(20) (2008) 201902. https://doi.org/10.1063/1.2929385.
[13] H. Aleali, L. Sarkhosh, R. Karimzadeh, and N. Mansour. Threshold-tunable optical limiters of Au nanoparticles in castor oil. Journal of Nonlinear Optical Physics & Materials., 21(02) (2012) 1250024. https://www.worldscientific.com/doi/abs/10.1142/S0218863512500245.
[14] L. Sarkhosh, and N. Mansour. Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles. Laser Physics., 25(6) (2015) 065404. https://iopscience.iop.org/article/10.1088/1054-660X/25/6/065404.
[15] L. Sarkhosh, and N. Mansour. Analysis of Z-scan measurement for large thermal nonlinear refraction in gold nanoparticle colloid. Journal of Nonlinear Optical Physics & Materials., 24(02) (2015)1550014. https://www.worldscientific.com/doi/abs/10.1142/S0218863515500149.
[16] J. Simon, S. Udayan, V. P. N. Nampoori and M. Kailasnath. Investigations on nonlinear optical properties and thermal diffusivity of gold nanoparticle embedded protein complex. Optics & Laser Technology., 138 (2011) 106859. https://www.sciencedirect.com/science/article/abs/pii/S0030399220314924.
[17] G. Baffou , F. Cichos, and R. Quidant. Applications and challenges of thermoplasmonics. Nature Materials., 19 (2020) 946–958. https://www.nature.com/articles/s41563-020-0740-6.
[18] A. Kumar, A. Taneja, T. Mohanty, and R. P. Singh. Effect of laser beam propagation through the plasmonic nanoparticles suspension. Results in Optics., 3 (2021) 100081. https://www.sciencedirect.com/science/article/pii/S2666950121000298.
[19] B. Azemoodeh Afshar, A. Jafari, Mir M. Golzan and R. Naderali, Nonlinear optical properties of gold nanoparticles produced by laser ablation at two different radiation wavelengths. Results in Optics., 12 (2023) 100462. https://www.sciencedirect.com/science/article/pii/S2666950123001141.
[20] J. L. Domínguez-Juárez, R. Quintero-Torres, M. A. Cardoso-Duarte, M. A. Quiroz-Juárez, J. L. Aragón, and J. Villatoro. Unveiling the properties of liquids via photothermal-induced diffraction patterns. communications physics., 6 (2023) 154. https://www.nature.com/articles/s42005-023-01278-x.
[21] T. Neupane, B. Tabibi, W. J. Kim, and F. J. Seo. Spatial Self-Phase Modulation in Graphene-Oxide Monolayer. Crystals., 13(2) (2023) 271. https://www.mdpi.com/2073-4352/13/2/271.
[22] B. Pishnamazi, and E. Koushki. Study of nonlinear optical diffraction patterns using machine learning models based on ResNet 152 architecture. AIP Advances., 13(1) (2023) 015020. https://pubs.aip.org/aip/adv/article/13/1/015020/2871165/Study-of-nonlinear-optical-diffraction-patterns.
[23] Qusay. M. A. Hassan, C. A. Emshary, and H. A. Sultan. Investigating the optical nonlinear properties and limiting optical of eosin methylene blue solution using a cw laser beam. Physica Scripta., 96 (2021) 9. https://iopscience.iop.org/article/10.1088/1402-4896/ac0868/meta.
[24] Y. Shan, Z. Li, B. Ruan, J. Zhu, Y. Xiang, and X. Dai. Two-dimensional Bi2S3-based all-optical photonic devices with strong nonlinearity due to spatial self-phase modulation. Nanophotonics., 8(12) (2019) 2225-2234. https://www.degruyter.com/document/doi/10.1515/nanoph-2019-0231/html?lang=en.
[25] R. Karimzadeh. Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow. Journal of Optics., 14(9) (2012) 095701. https://iopscience.iop.org/article/10.1088/2040-8978/14/9/095701/meta.
[26] R. Karimzadeh. Studies of spatial self-phase modulation of the laser beam passing through the liquids. Optics communications., 286 (2013) 329-333. https://www.sciencedirect.com/science/article/abs/pii/S0030401812009054.
[27] B. M. Irivas, M. A. Carrasco, M. M. Otero, R. R. García, and M. I. Castillo. Far-field diffraction patterns by a thin nonlinear absorptive nonlocal media. optics Express., 23(11) (2015) 14036-14043. https://opg.optica.org/oe/fulltext.cfm?uri=oe-23-11-14036&id=318911.
[28] J. Whinnery, D. Miller, and F. Dabby. Thermal convention and spherical aberration distortion of laser beams in low-loss liquids. IEEE Journal of Quantum Electronics., 3(9) (1967) 382-383. https://ieeexplore.ieee.org/abstract/document/1074612/.
[29] S. S. Sarkisov. Circulation of fluids induced by self-acting laser beam. Journal of applied physics., 99(11) (2006) 114903. https://pubs.aip.org/aip/jap/article- abstract/99/11/114903/144019/Circulation-of-fluids-induced-by-self-acting-laser?redirectedFrom=fulltext.
[30] J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, Long‐Transient Effects in Lasers with Inserted Liquid Samples. J. Appl. Phys., 36 (1965) 3-8. https://pubs.aip.org/aip/jap/article-abstract/36/1/3/365858/Long-Transient-Effects-in-Lasers-with-Inserted?redirectedFrom=fulltext.
[31] Y. Shi, Y. Gao, Y. Hu, Y. Xue, and B. Gu. Spatial self-phase modulation with tunable dynamic process and its applications in all-optical nonlinear photonic devices. Optics and Lasers in Engineering., 15 (2022) 107168. https://www.sciencedirect.com/science/article/abs/pii/S0143816622002214.
[32] T. Mohamed, M. H. El-Motlak, S. Mamdouh, M. Ashour, H. Ahmed, H. Qayyum, and A. Mahmoud. Excitation wavelenghth and colloids concentration-dependent nonlinear optical properties of silver nanoparticles synthesized by laser ablation. Materials., 15 (2022) 7348. https://www.mdpi.com/1996-1944/15/20/7348.
[33] Y. Gao, Q. Chang, W. Jiao, H. Ye, Y. Li, Y. Wang, Y. Song, and D. Zhu. Solvent dependent optical limiting behavior of lead nanowires stabilized by [60] fullerene derivative. Appl. Phys. B., 88 (2017) 89–92. https://link.springer.com/article/10.1007/s00340-007-2669-8.
[34] G. X. Chen, M. H. Hong, T. C. Chong, H. I. Elim, G. H. Ma, and W. Ji. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J. Appl. Phys., 95 (2004)1455–1459. https://pubs.aip.org/aip/jap/article-abstract/95/3/1455/770788/Preparation-of-carbon-nanoparticles-with-strong?redirectedFrom=fulltext.
[35] V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti. Synthesis of gold nanoparticles by laser ablation in toluene: Quenching and recovery of the surface plasmon absorption. J. Phys. Chem. B., 109 (2015) 23125–23128. https://pubmed.ncbi.nlm.nih.gov/16375271/.
[36] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE journal of quantum electronics., 26(4) (1990) 760-769. https://ieeexplore.ieee.org/document/53394.
[37] A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. JOSA B., 9(3) (1992) 405-414. https://opg.optica.org/viewmedia.cfm?r=1&rwjcode=josab&uri=josab-9-3-405&html=true.
[38] L. Agiotis, and M. Meunier. Nonlinear thermal lensing of high repetition rate ultrafast laser light in plasmonic nano-colloid. Nanophotonics., 11(5) (2022) 1051–1062. https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0775/html?lang=en.
[39] Yu-Chien Huang, Te-Hsin Chen, Jz-Yuan Juo, Shi-Wei Chu, and Chia-Lung Hsieh. Quantitative Imaging of Single Light-Absorbing Nanoparticles by Widefield Interferometric Photothermal Microscopy. ACS Photonics., 8 (2021) 592−602. https://pubs.acs.org/doi/abs/10.1021/acsphotonics.0c01648.
[40] Yi-Shiou Duh, Y. Nagasaki, Yu-Lung Tang, Pang-Han Wu, Hao-Yu Cheng, Te-Hsin Yen, Hou-Xian Ding, K. Nishida, I. Hotta, Jhen-Hong Yang, Yu-Ping Lo, Kuo-Ping Chen, K. Fujita, Chih-Wei Chang, Kung-Hsuan Lin, J. Takahara, and Shi-Wei Chu. Giant photothermal nonlinearity in a single silicon nanostructure. Nature Communications., 11 (2020) 4101. https://www.nature.com/articles/s41467-020-17846-6.
[41] R. Karimzadeh, and M. Arshadi. Thermal lens measurement of the nonlinear phase shift and convection velocity. Laser Phys., 23 (2013) 115402. https://iopscience.iop.org/article/10.1088/1054-660X/23/11/115402/meta.
[42] H. Aleali, and N. Mansour. Thermal-induced nonlinearity enhancement in Ag nanoparticles colloids by low thermal conductivity liquids. Journal of Optics., 48(2) (2019) 172-178. https://link.springer.com/article/10.1007/s12596-019-00520-6.
[43] S. Hashemi Zadeh, M. Rashidi-Huyeh, and B. Palpant. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance. Journal of Applied Physics., 122(16) (2017) 163108. https://ui.adsabs.harvard.edu/abs/2017JAP...122p3108H/abstract.