Terahertz Resonance Fluorescence of a Spherical Gaussian Quantum Dot
Subject Areas : Journal of Optoelectronical NanostructuresBehrooz Vaseghi 1 * , Ghasem Rezaei 2 , Nasim Mohammadi 3 , Shakiba Mardani 4
1 - Department of Physics, College of Sciences, Yasouj University, Yasouj, Iran
2 - Department of Physics, College of Sciences, Yasouj University, Yasouj, Iran
3 - Department of Physics, College of Sciences, Yasouj University, Yasouj, Iran
4 - Department of Physics, College of Sciences, Yasouj University, Yasouj, Iran
Keywords: Resonance Fluoresce Spherical Quantum Dot Gaussian Confinement Correlation Function External Factors,
Abstract :
Resonance fluorescence and related correlation functions of a spherical quantum dot with Gaussian confinement potential and doped hydrogen like impurity is studied. Similar to atomic systems we can see the resonance fluorescence with different photon statistics in the system. The results indicate that the physical parameters of the quantum dot significantly influence both the resonance spectrum and correlation functions.
The possibility of controlling the fluorescence phenomena via external parameters and dot engineering is an important result of the current study.
[1] A. Gombkötö, A. Czirják, S. Varró, P. Földi, Quantum-optical model for the dynamics of high-order-harmonic generation, Phys. Rev. A 94 (2016) 013853. Available: https://doi.org/10.1103/PhysRevA.94.013853.
[2] L. Mandel, Squeezed States and Sub-Poissonian Photon Statistics, Phys. Rev. Lett. 49 (1982) 136. Available: https://doi.org/10.1103/PhysRevLett.49.136.
[3] P. Grangier, et. al., Observation of Photon Antibunching in Phase-Matched Multiatom Resonance Fluorescence, Phys. Rev. Lett. 57 (1986) 687. Available: https://doi.org/10.1103/PhysRevLett.57.687.
[4] B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev. 188 (1969) 11969. Available: https://doi.org/10.1103/PhysRev.188.1969.
[5] F. Wu, et al., Investigation of the Spectrum of Resonance Fluorescence Induced by a Monochromatic Field, Phys. Rev. Lett. 35 (1975) 1426. Available: https://doi.org/10.1103/PhysRevLett.35.1426.
[6] C. H. R. Ooi, E. A. Sete, W. M. Liu, Quantum dynamics and spectra of vibrational Raman-resonance fluorescence in a two-mode cavity, Phys. Rev. A 92 (2015) 063847. Available: https://doi.org/10.1103/PhysRevA.92.063847.
[7] W. Vogel, D.G. Welsch, Quantum Optics, WILEY-VCH, Germany, 2006.
[8] M.O. Scully, S.M. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 2008.
[9] S. Wen, R. Zhang, S. Hu, L. Zhang, L. Liu, Improved fluorescence properties of core–sheath electrospun nanofibers sensitized by silver nanoparticles, Opt. Mater. 47 (2015) 263-269. Available: https://doi.org/10.1016/j.optmat.2015.05.038.
[10] F. Carreno, S. M. Razavi, M. A. Anton, Resonance fluorescence and phase-dependent spectra of a singly charged 𝑛-doped quantum dot in the Voigt geometry, Phys. Rev. B 95 (2017) 195310. Available: https://doi.org/10.1103/PhysRevB.95.195310.
[12] J. Enders, et.al., Nuclear resonance fluorescence experiments on 204,206,207,208Pb up to 6.75 MeV, Nuclear Physics A 724 (2003) 243–273. Available: doi:10.1016/S0375-9474(03)01554-9.
[13] E. Scholl, et. al., Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability, Nano Lett. 19 (2019) 2404–2410. Available: https://doi.org/10.1021/acs.nanolett.8b05132; S. M. Barnett, et. Al., Decay of excited atoms in absorbing dielectrics, J. Phys. B 29 (1996) 3763. Available: DOI 10.1088/0953-4075/29/16/019.
[14] J. R. Lakowics, Plasmonics in Biology and Plasmon-Controlled Fluorescence, Plasmonics 1(2006) 5-33. Available: doi: 10.1007/s11468-005-9002-3.
[15] D. Wigger, M. Weiß, M. Lienhart, K. Müller, J. J. Finley, T. Kuhn, H. J. Krenner, P. Machnikowski, Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot, Phys. Rev. Research 3 (2021) 033197. Available: https://doi.org/10.1103/PhysRevResearch.3.033197.
[16] S. Kahmann, A. Shulga, M. A. Loi, Quantum Dot Light-Emitting Transistors—Powerful Research Tools and Their Future Applications, Advanced Functional Materials 30 (2020) 1904174. Available: https://doi.org/10.1002/adfm.201904174.
[17] E. Parto, G. Rezaei, A. Mohammadi Eslami, T. Jalali, Finite difference time domain simulation of arbitrary shapes quantum dots, Eur. Phys. J. B 92 (2019) 246. Available: https://doi.org/10.1140/epjb/e2019-100410-9.
[18] B. Vaseghi, M. Sadri, G. Rezaei, A. Gharaati, Optical rectification and third harmonic generation of spherical quantum dots: Controlling via external factors, Physica B 457 (2015) 212-217. Available: https://doi.org/10.1016/j.physb.2014.10.020.
[19] C. H. H. Schulte, J. Hansom, A. E. Jones, C. Matthiesen, C. Le Gall, M. Atatüre, Quadrature squeezed photons from a two-level system, Nature 525 (2015) 222-225. Available: https://doi.org/10.1038/nature14868.
[20] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Phys. Rev. B 46 (1992) 15578. Available: https://doi.org/10.1103/PhysRevB.46.15578.
[21] G. Singh Selopal, H. Zhao, Z. M. Wang, F. Rosei, Core/Shell Quantum Dots Solar Cells, Advanced Functional Materials 30 (2020) 1908762. Available: https://doi.org/10.1002/adfm.201908762.
[22] H. N. Gopalakrishna, R. Baruah, C. Hünecke, V. Korolev, M. Thümmler, A. Croy, M. Richter, F. Yahyaei, R. Hollinger, V. Shumakova, I. Uschmann, H. Marschner, M. Zürch, C. Reichardt, A. Undisz, J. Dellith, A. Pugžlys, A. Baltuška, C. Spielmann, U. Peschel, S. Gräfe, M. Wächtler, and D. Kartashov, Tracing spatial confinement in semiconductor quantum dots by high-order harmonic generation, Phys. Rev. Research 5 (2023) 013128. Available: https://doi.org/10.1103/PhysRevResearch.5.013128.
[23] L. A. Cipriano, G. Di Liberto, S. Tosoni, G. Pacchioni, Nanoscale 12 (2020) 17494-17501. Available: https://doi.org/10.1039/D0NR03577G.
[24] A. Jahanshir, Quanto-Relativistic Background of Strong Electron-Electron Interactions in Quantum Dots under the Magnetic Field JOPN 6 (2021) 1-24. Available: DOI: 10.30495/JOPN.2021.28742.1231
[25] H. Bahramiyan, S. Bagheri, Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect, JOPN 3 (2018) 79-100.
Available: https://jopn.marvdasht.iau.ir/article_3047_0a2d460925ad6686daf5ac62c9082227.pdf
[26] S. M. Razavi, B. Vaseghi, Terahertz resonance fluorescence and squeezing in quantum dots: Effects of external electric field and dimension, Optik 158 (2018) 460. Available: https://doi.org/10.1016/j.ijleo.2017.12.180.
[27] S. Taghipour, G. Rezaei, A. Gharaati Electromagnetically induced transparency in a spherical Gaussian quantum dot, Eur. Phys. J. B. 95 (2022) 141. Available: https://doi.org/10.1140/epjb/s10051-022-00409-7.