The influence of substrate preparation conditions on the Raman spectra of In2S3 thin films prepared by physical vapor deposition
Subject Areas : Journal of Optoelectronical NanostructuresBashir Eghbalifar 1 , Heydar Izadneshan 2 , Ghahraman Solookinejad 3 , Leila Separdar 4
1 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
3 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
4 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Keywords: structure, In2S3, buffer layer, Raman spectroscopy, Thin films,
Abstract :
In this paper, we employed Raman spectroscopy to
investigate Indium sulfide thin layer films deposited on
glass substrates using the PVD method. The results showed
that the bandwidth and Raman shift of different In2S3 thin
films depended on the annealing temperature. In addition,
the crystallization stage from tetragonal to cubic occurred
at the excessive temperature range of 350-400 °C. The
Raman spectroscopy of the In2S3 thin films before
annealing and at 300 °C indicated the existence of β- In2S3
at 70, 166 and 281 cm-1 in the active modes of the spectra.
New modes that were related to α-In2S3 appeared at 126,
244, and 266 cm-1 after thermal treatment at 400 °C for 30
and 60 min. Our results are in agreement with the phase
transitions observed from the XRD analysis of In2S3 thin
films. There are few reports about the Raman spectroscopy
of In2S3 thin layer films deposited using vacuum thermal
evaporation. In the present paper, the Raman spectra of
In2S3 thin films with different thicknesses as well as the
effects of temperature on their depositions in vacuum were
examined.
[1] H. Hashemi Madani, M.R. Shayesteh, and M.R. Moslemi, A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures, [online]. 6(1) (2021, Winter.) 71-86. Available: https://dx.doi.org/10.30495/jopn.2021.4541
[2] H. Izadneshan, V. Gremenok, and G. Solookinejad, Fabrication of Cu (In, Ga) Se2 solar cells with In2S3 buffer layer by two stage process. Journal of Optoelectronical Nanostructures, [online]. 1(2) (2016, Sept.) 47-56.
Available: https://dorl.net/dor/20.1001.1.24237361.2016.1.2.5.4
[3] S.M.S. Hashemi Nassab, M. Imanieh, and A. Kamaly, The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency. Journal of Optoelectronical Nanostructures, [online]. 1(1) (2016, Spring) 9-24. Available: https://dorl.net/dor/20.1001.1.24237361.2016.1.1.2.9
[4] E. Kärber, K.Otto, A.Katerski, A.Mere and M.Krunks, Raman spectroscopic study of In2S3 films prepared by spray pyrolysis. Materials science in semiconductor processing , [online]. 25 (2014, Sept.) 137-142.
Available: https://doi.org/10.1016/j.mssp.2013.10.007
[5] B. Asenjo, C. Guillén, A.M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J. Herrero and M.T. Gutiérreza, Properties of In2S3 thin films deposited onto ITO/glass substrates by chemical bath deposition. Journal of Physics and Chemistry of Solids, [online]. 71(12) (2010, Dec.) 1629-1633.
Available: https://dx.doi.org/10.1016/j.jpcs.2010.09.011
[6] A. Dhanya, K. Deepa and T. Remadevi, Effect of annealing on photo accelerated chemically deposited Indium sulfide thin films with various cationic precursors. Applied Physics A , [online]. 117(3) (2014, Nov.) 1161-1169. Available: http://dx.doi.org/10.1007/s00339-014-8488-y
[7] A.M. AbdelHaleem and M. Ichimura, Electrochemical deposition of indium sulfide thin films using two-step pulse biasing. Thin Solid Films, [online]. 516(21) (2008, Sept). 7783-7789.
Available: https://doi.org/10.1016/j.tsf.2008.03.009
[8] C. Laurencic, L. Arzel, F. Couzinié-Devy and N.Barreau., Investigation of Cu (In, Ga) Se2/In2S3 diffuse interface by Raman scattering. Thin Solid Films, [online]. 519(21) (2011, Aug.) 7553-7555.
Available: https://doi.org/10.1016/j.tsf.2010.12.089
[9] J. Rousset, F. Donsanti, P. Genevée, G. Renou and D.Lincot., High efficiency cadmium free Cu (In, Ga) Se2 thin film solar cells terminated by an electrodeposited front contact. Solar Energy Materials and Solar Cells, [online]. 95(6) (2011, Jun.) 1544-1549.
Available: https://doi.org/10.1016/j.solmat.2010.12.009
[10] H. Spasevska, C.C. Kitts, C. Ancora and G. Ruani., Optimised In2S3 thin films deposited by spray pyrolysis. International Journal of Photoenergy, [online]. 2012 (2012, Feb.) Available: https://doi.org/10.1155/2012/637943
[11] M. Valdés, A. Goossens, and M. Vázquez, Sulfurization of electrodeposited CuInSe2-based solar cells. Materials Chemistry and Physics, [online]., 125(3) (2011, Feb.) 860-865.
Available: https://doi.org/10.1016/j.matchemphys.2010.09.032
[12] R. Verma, D. Datta, A. Chirila, D. Güttler, J. Perrenoud, F. Pianezzi, U. Müller, S. Kumar and A.N. Tiwari., Optical, structural, and chemical properties of flash evaporated In 2 S 3 buffer layer for Cu (In, Ga) Se 2 solar cells. Journal of Applied Physics, [online]. 108(7) (2010, Oct.) 074904. Available: https://doi.org/10.1063/1.3490624
[13] H. Izadneshan and G. Solookinejad, Effect of annealing on physical properties of Cu2ZnSnS4 (CZTS) thin films for solar cell applications. Journal of Optoelectronical Nanostructures, [online]. 3(2) (2018, Spring.) 19-28. Available: https://dorl.net/dor/20.1001.1.24237361.2018.3.2.2.5
[14] J. Binsma, L. Giling and J. Bloem, Phase relations in the system Cu2S-In2S3. Journal of Crystal Growth, [online]. 50(2) (1980, Oct.) 429-436. Available: https://doi.org/10.1016/0022-0248(80)90090-1
[15] R. Diehl, C.-D. Carpentier, and R. Nitsche, The crystal structure of γ-In2S3 stabilized by As or Sb. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, [online]. 32(4) (1976, Sep.) 1257-1260. Available: https://doi.org/10.1107/s0567740876005062
[16] C. Gao, J. Li, Zh. Shan, F. Huanga and H. Shen., Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Materials Chemistry and Physics, [online]. 122(1) (2010, Jul.) 183-187.
Available: http://dx.doi.org/10.1016/j.matchemphys.2010.02.030
[17] D. Abou-Ras, T. Kirchartz, and U. Rau, Advanced characterization techniques for thin film solar cells, [online]. (2011, April). Available: https://doi.org/10.1002/9783527636280
[18] N. Naghavi, et al., Buffer layers and transparent conducting oxides for chalcopyrite Cu (In, Ga)(S, Se) 2 based thin film photovoltaics: present status and current developments. Progress in Photovoltaics: Research and Applications, [online]. 18(6) (2010, Aug.) 411-433. Available: https://dx.doi.org/10.1002/pip.955
[19] N.Revathi, P.Prathap, R.W.Miles and K.T.Ramakrishna Reddy., Annealing effect on the physical properties of evaporated In2S3 films. Solar Energy Materials and Solar Cells, [online]. 94(9) (2010, Sep.) 1487-1491. Available: https://doi.org/10.1016/j.solmat.2010.02.044
[20] R.Ranjith, T. TheresaJohn, C.Sudha Kartha, K.P.Vijayakumar, T.Abe and Y.Kashiwaba., Post-deposition annealing effect on In2S3 thin films deposited using SILAR technique. Materials science in semiconductor processing, [online]. 10(1) (2007, Feb.) 49-55.
Available: https://doi.org/10.1016/j.mssp.2006.06.001
[21] S.N. Jafar, A. Ghadimi, and S. Rouhi, Strained Carbon Nanotube (SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures, [online]. 5(4) (2020, Autumn).
Available: https://iopscience.iop.org/article/10.1088/0953-8984/14/27/304
[22] K. Kambas, J. Spyridelis, and M. Balkanski, Far infrared and Raman optical study of. cap alpha.-and. beta.-In/sub 2/S/sub 3/compounds. Phys. Status Solidi B;(German Democratic Republic) , [online]. 105(1) (1981.) 291-296. Available: https://doi.org/10.1002/pssb.2221050132
[23] V.V. Ursaki, F.J. Manjón, I.M. Tiginyanu and V.E. Tezlevan., Raman scattering study of pressure-induced phase transitions in MIn2S4 spinels. Journal of Physics: Condensed Matter, [online]. 14(27) (2002, Jun.) 6801. Available:https://iopscience.iop.org/article/10.1088/0953-8984/14/27/304/pdf
[24] J. Alvarez-Garcıa, A. Pérez-Rodrı́gue, A.Romano-Rodrı́guez, T. Jawhari, J.R. Morante, R. Scheer and W. Calvet., Raman scattering structural evaluation of CuInS2 thin films. Thin Solid Films, [online].387(1-2) (2001, May.) 216-218.
Available: https://doi.org/10.1016/S0040-6090%2800%2901714-4
[25] H. Lutz and H. Haeuseler, Infrared and Raman spectroscopy in inorganic solids research. Journal of Molecular structure, [online]. 511 (1999, Nov.) 69-75. Available: https://doi.org/10.1016/S0022-2860(98)00630-9
[26] C. Guillén and J. Herrero, Polycrystalline growth and recrystallization processes in sputtered ITO thin films. Thin solid films, [online]. 510(1-2) (2006, Jul.) 260-264. Available: https://doi.org/10.1016/j.tsf.2005.12.273
[27] Y. Xiong, Y. Xie, G. Du, X. Tian and Y. Qian., A novel in situ oxidization–sulfidation growth route via self-purification process to β-In2S3 dendrites. Journal of Solid State Chemistry, [online]. 166(2) (2002, Jul.) 336-340. Available: https://doi.org/10.1006/jssc.2002.9598
[28] G.K. Parker, K.M. Watling, G.A. Hope and RonaldWoods., A SERS spectroelectrochemical investigation of the interaction of sulfide species with gold surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, [online]. 318(1-3) (2008, Apr.) 151-159. Available: https://doi.org/10.1016/j.colsurfa.2007.12.029
[29] H. Izadneshan and V. Gremenok, In2S3 Thin Films Produced by Thermal Evaporation for Solar Cell Applications. Journal of Advanced Physics, [online]. 2(4) (2014, Nov.) 260-264.
Available: https://doi.org/10.1007/s10812-014-0003-x
[30] H. Izadneshan, H. and V.F. Gremenok, Influence of thickness on structural properties of annealed In_2S_3 thin films deposited by thermal evaporation. Проблемы физики, математики и техники, [online]., 2014(1 (18): 21-25. Available: http://mi.mathnet.ru/eng/pfmt283