PhC-based Majority Gate using a nonlinear directional coupler
Subject Areas : Journal of Optoelectronical NanostructuresReyhaneh Rigi 1 , Keivan Navi 2 * , Hojjat Sharifi 3
1 - Department of Computer Engineering, Islamic Azad University, Kerman, Iran
2 - Department of Computer Science and Engineering
Shahid Beheshti University, GC, Tehran, Iran
3 - Department of Computer Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Keywords: Photonic Crystal, All-optical Majority Gate, Nonlinear Directional Coupler,
Abstract :
Wide bandwidth and high data transfer rates are essential
advantages of optical telecommunication networks. Full
exploitation of the benefits of optical communications
requires a fully optical network. All-optical circuits are
one of the main alternatives to eliminate the limits of
electronic circuits and provide high-speed processing
systems. This study aims to design an Majority Gate based
on the Nonlinear Kerr Effect. The proposed structure
includes a directional coupler with nonlinear rods. In the
proposed structure, a nonlinear directional coupler is used
to transmit the phase of the input signal. Also, input
connections are optimized to prevent the return of light
along the structure. To evaluate the operation of the
proposed structures, PWE and FDTD methods are used.
The effect of some parameters variation on the output
power has been investigated, proving the robustness of this
designed structure of Majority gate against process
variation. In this simulation, the proposed structures'
switching power is 3 W and the bit rate is Tbits/s.
[1] A. Goodarzi and M. Ghanaatshoar. Coherent all-optical transistor based on frustrated total internal reflection. Sci. Rep. 8(1) (2018) 1-8. Available: https://www.nature.com/articles/s41598-018-23367-6.
[2] T. Matsumoto, K. Komatsu, G. Hosoya, and H. Yashima. Performance of all-optical AND gate using photonic-crystal QDSOA at 160 Gb/s. Electron. Lett. 54(9) (2018) 580-582. Available: https://ietresearch.onlinelibrary.wiley.com /doi/pdf/10.1049/el.2018.0371.
[3] S. M. H. Jalali, M. Soroosh, and G. Akbarizadeh. Ultra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators. J. Optoelectron. Nanostructures. 4(3) (2019) 59-72. Available: http://jopn.miau.ac.ir/article _3620.html.
[4] H. M. Hussein, T. A. Ali, and N. H. Rafat. A review on the techniques for building all-optical photonic crystal logic gates. Opt. Laser Technol. 106 (2018) 385-397. Available: https://www.sciencedirect.com/science/article/ abs/pii/S0030399217318935.
[5] R. Fan, X. Yang, X. Meng, and X. Sun. 2D photonic crystal logic gates based on self-collimated effect. J. Phys. Appl. Phys. 49(32) (2016) 325104. Available: https://iopscience.iop.org/article/10.1088/0022-3727/49/32/3251 04/meta.
[6] E. haq Shaik and N. Rangaswamy. Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34(1) (2017) 140-148. Available: https://link. springer.com/article/10.1007/s11107-016-0683-7.
[7] H. M. Hussein, T. A. Ali, and N. H. Rafat. New designs of a complete set of photonic crystals logic gates. Opt. Commun. 411 (2018) 175-181. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401817310611.
[8] T. Jalali, A. Gharaati, M. Rastegar, and M. Ghanaatian. Enhancement of the magneto-optical Kerr effect in one-dimensional magnetophotonic crystals with adjustable spatial configuration. J. Optoelectron. Nanostructures. 4(1) (2019) 67-86. Available: http://jopn.miau.ac.ir/article_3386.html.
[9] K. Milanchian. Analytical Investigation of TM Surface Waves in 1D Photonic Crystals Capped by a Self-Focusing Left-Handed Slab. J. Optoelectron. Nanostructures. 2(4) (2017) 19-32. Available: http://jopn.miau.ac.ir/article _2571.html.
[10] Z. Rashki. Novel design for photonic crystal ring resonators based optical channel drop filter. J. Optoelectron. Nanostructures. 3(3) (2018) 59-78. Available: http://jopn.miau.ac.ir/article_3046.html.
[11] M. Nikoufard and M. Kazemi Alamouti. Design of Photonic Crystal Polarization Splitter on InP Substrate. J. Optoelectron. Nanostructures. 1(2) (2016) 69-76. Available: http://jopn.miau.ac.ir/article_2050.html.
[12] F. Mehdizadeh and H. Alipour-Banaei. All optical 1 to 2 decoder based on photonic crystal ring resonator. J. Optoelectron. Nanostructures. 2(2) (2017) 1-10. Available: http://jopn.miau.ac.ir/article_2419.html.
[13] Y. Nagpal and R. K. Sinha. Modeling of photonic band gap waveguide couplers. Microw. Opt. Technol. Lett. 43(1) (2004) 47-50. Available: https:// onlinelibrary.wiley.com/doi/abs/10.1002/mop.20371.
[14] N. Yamamoto, T. Ogawa, and K. Komori. Photonic crystal directional coupler switch with small switching length and wide bandwidth. Opt. Express. 14(3) (2006) 1223-1229. Available: https://opg.optica.org/oe/ fulltext .cfm?uri=oe-14-3-1223&id=87790.
[15] A. Salmanpour, S. Mohammadnejad, and A. Bahrami. All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62(9) (2015) 693-700. Available: https://www. tandfonline.com/doi/abs/10.1080/09500340.2014.1003256.