Tunable Terahertz Absorber Based on Hexagonal Graphene Disk Array
Subject Areas :
Journal of Optoelectronical Nanostructures
Sajad Ghajarpour-Nobandegani
1
,
Mohammad Javad Karimi
2
*
,
Hamed Rahimi
3
1 - Department of Physics, Shiraz University of Technology, Shiraz, Iran.
2 - Department of Physics, Shiraz University of Technology, Shiraz, Iran
3 - Department of Physics, Yazd University, Yazd, Iran.
Received: 2023-04-30
Accepted : 2023-06-02
Published : 2023-05-01
Keywords:
Graphene,
Absorber,
Absorptance,
Terahertz,
Metamaterial,
Abstract :
Abstract:
In this paper, a tunable absorber structure based on a graphene hexagonal array in the terahertz range is investigated. The graphene hexagonal absorber is simulated by the finite element method. The effects of the geometry, graphene Fermi energy level and incident light angle, and light polarization on the absorptance of the structure are investigated. The results show that the absorptance spectrum of the proposed absorber is tuned from 6.1 THz to 9.1 THz when the Fermi energy increases from 0.4eV to 0.9eV. The absorptance peak shifts to lower and higher frequencies with increasing hexagonal side length and Fermi energy level, respectively. The absorption of the structure is over 90% in the incident light angle range from 0 to 80º for the TE polarization and in the range of 0-40º for the TM polarization. Also, results indicate that the absorption peaks shift to the lower energies with increasing the dielectric constant of the dielectric layer.
References:
References
Liu, S.Zhengyong. Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon. 174 (2021) ,617-624. Available: https://sciencedirect.com/science/article/pii/S000862232031174X
Servatkhah, and H. Alaei. The Effect of Antenna Movement and
Material Properties on Electromagnetically Induced Transparency in a TwoDimensional Metamaterials. Journal of Optoelectronical Nanostructures 1.2 (2016):31-38. Available: http://jopn.miau.ac.ir/article_2046.html
B. Pendry, D.R. Smith, Reversing light with negative refraction, Contemp. Phys. 45, (2004)191202. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d032ffe1727a8e0949c3917869fd98d3b0189cc5
Y. Xiao, D.J. Liu, X.L. Ma, Z.H. Wang, Multi-band transmissions of chiral metamaterial based on FabryPerot like resonators. Opt. Express 23, (2015)70537061. Available: https://opg.optica.org/abstract.cfm?uri=oe-23-6-7053
Y. Tang, Z.Y. Xiao, K.K. Xu, Z.H. Wang, Cross polarization conversion based on a new chiral spiral slot structure in THz region. Opt. Quantum Electron.48, (2016)111. Available: https://link.springer.com/article/10.1007/s11082-016-0407-3
L.Markovich, A. Andrei, Z. Maksim, M. Radu, V. L. Andrei . Metamaterial polarization converter analysis: limits of performance. Applied Physics B 112, (2013)143-152. Available: https://link.springer.com/article/10.1007/s00340-013-5383-8
Rosenblatt, O. Meir. Power drainage and energy dissipation in lossy but perfect lenses. Physical Review A 95, (2017) 053857. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.053857
Chen, N. Hai, T. Chaojun, C. Yinhang, Y. Bo, Z. Zhiyuan, K. Yurong, X. Zhijun, C.Pinggen . Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials. Applied Physics Express 12, (2019)052015. Available: https://iopscience.iop.org/article/10.7567/1882-0786/ab14fa/meta
Li, J. Chuansheng, R. Yongze, H. Jigang, Q. Meng, W. Lingling. Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method. Carbon 141, (2019) 481-487.Available: https://sciencedirect.com/science/article/pii/S0008622318309138
Cubukcu, S. Zhang, Y.S. Park, G. Bartal, X. Zhang, Split ring resonator sensors for infrared detection of single molecular monolayers, Appl. Phys.Lett. 95, (2009) 043113. Available: https://aip.scitation.org/doi/abs/10.1063/1.3194154
Ouchi, K. Kajiki, K. Takayuki, I. Takeaki, K. Yasushi, S. Ryota, K. Oichi , K. Kodo, Terahertz imaging system for medical applications and related high efficiency terahertz devices. devices, J. Infrared, Millim. Terahertz 35, (2014) 118-130. Available: https://link.springer.com/article/10.1007/s10762-013-0004-5
Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, (2006) 977980. Available: https://science.org/doi/abs/10.1126/science.1133628
Grigorenko, M. Polini, K. Novoselov, Graphene plasmonics. Nat. Photonics 6, (2012) 749758. Available: https://nature.com/articles/nphoton.2012.262.
Wright, C. Zhang, Dynamic conductivity of graphene with electron-phonon interaction. Phys. Rev. B 81, (2010) 165413. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.165413
Xiao, R. Sun, J. He, K. Qin, S. Kong, J. Chen, W. Xiumin, A terahertz modulator based on graphene plasmonic waveguide. IEEE Photon. Technol. Lett. 27, (2015) 21902192. Available: https://ieeexplore.ieee.org/abstract/document/7153552/
Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett. 15, (2015) 4393-4400. Available: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b00630
Faezinia, Quantum modeling of light absorption in graphene based phototransistors. Journal of Optoelectronical Nanostructures 2.1 (2017): 9-20. Available:http://jopn.miau.ac.ir/article_2196.html
Moftakharzadeh, B. Afkhami Aghda, and M. Hosseini. Noise
Equivalent Power Optimization of Graphene-Superconductor Optical Sensors inthe Current Bias Mode. Journal of Optoelectronical Nanostructures 3.3 (2018): 1-12. Available: http://jopn.miau.ac.ir/article_3040.html
Zhao, J. M. Zhao, Z. M. Zhang. Enhancement of near-infrared absorption in graphene with metal gratings. Applied Physics Letters 105, (2014) 031905. Available: https://aip.scitation.org/doi/abs/10.1063/1.4890624
Narita, A. V. Ivan, F. Wout, S. M. Kunal, A. J. Soeren, R. H. Michael, B. Mischa, et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. Acs Nano 8, (2014) 11622-11630. Available: https://pubs.acs.org/doi/abs/10.1021/nn5049014
Chen, C.Siyu, G. Ping, Y. Zhendong, T. Chaojun, X. Zhijun, L. Bo, L. Zhengqi. Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon 162, (2020) 187-194. Available: https://sciencedirect.com/science/article/pii/S0008622320301780
S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, S. Q. Qin. Monolayer-graphene-based perfect absorption structures in the near infrared. Optics express 25, (2017) 13079-13086. Available: https://opg.optica.org/abstract.cfm?uri=oe-25-12-13079
Liu, C.Arvinder, Z. Deyin, R. P. Jessica, J. Yichen, S. Yichen, M.Laxmy, et al. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Applied Physics Letters 105, (2014) 181105. Available: https://aip.scitation.org/doi/abs/10.1063/1.4901181
Hasani, R. Chegell, Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field. Journal of Optoelectronical Nanostructures, (2020), 5(2): 49-64. Available:https://jopn.marvdasht.iau.ir/article_4218_d5c26c00df89ef4ffd208100103b6d30.pdf
Rahimi, Absorption spectra of a graphene embedded one dimensional Fibonacci a periodic structure. Journal of Optoelectronical Nanostructures, (2018), 3(4): 45-58. Available:https://jopn.marvdasht.iau.ir/article_3259_fd0b0ef6f20c392b449ca69ad1d2f918.pdf
R. Zhan, F.Y. Zhao, X.H. Hu, X.H. Liu, J. Zi, Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Phys. Rev. B 86, (2012) 165416. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165416
Matthaiakakis, X.Z. Yan, H. Mizuta, M.D.B. Charlton, Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device. Sci. Rep. 7, (2017) 7303. Available: https://nature.com/articles/s41598-017-07254-0
Safaei, S. Chandra, M.N. Leuenberger, D. Chanda, Wide angle dynamically tunable enhanced infrared absorption on large-area nanopatterned graphene. ACS Nano 13, (2019) 421-428. Available: https://pubs.acs.org/doi/abs/10.1021/acsnano.8b06601
D. Goldflam, Z. Fei, I. Ruiz, S.W. Howell, P.S. Davids, D.W. Peters, T.E. Beechem, Designing graphene absorption in a multispectral plasmonenhanced infrared detector. Optic Express. 25, (2017) 12400-12408. Available: https://opg.optica.org/abstract.cfm?uri=oe-25-11-12400
Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, Q. Shiqiao, Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width. Applied Physics Express. 8, (2014) 015102. Available: https://iopscience.iop.org/article/10.7567/APEX.8.015102/meta
Biabanifard, M. S. Abrishamian. Circuit modeling of tunable terahertz graphene absorber. Optik. 158, (2018) 842-849. Available: https://sciencedirect.com/science/article/pii/S0030402617317461
Ye, Z. Fang, Z. Yong, H. L. Qing. Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon. 148, (2019) 317-325. Available: https://sciencedirect.com/science/article/pii/S0008622319303100
Biabanifard, S. Asgari, S. Biabanifard, M. S. Abrishamian. Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik. 182, (2019) 433-442. Available: https://sciencedirect.com/science/article/pii/S0030402619300683
Qi, L. Chang, S. M. A. Shah. A broad dual-band switchable graphene based terahertz metamaterial absorber. Carbon. 153, (2019) 179-188. Available: https://sciencedirect.com/science/article/pii/S0008622319306980
Biabanifard. Ultra-broadband terahertz absorber based on graphene ribbons. Optik. 172, (2018) 1026-1033. Available: https://sciencedirect.com/science/article/pii/S0030402618311094
Cen, C. Jiajia, L. Cuiping, H. Jing, C. Xifang, C. Yongjian, Y. Zao, X. Xibin, Y. Yougen, X. Shuyuan. Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Physica E: Lowdimensional Systems and Nanostructures. 103, (2018) 93-98. Available: https://sciencedirect.com/science/article/pii/S1386947718303783
He, Y. Yuan, Z. Zhihan, C. Minghua, Z. Lei, Y. Wenlong, Y. Yuqiang, W. Fengmin, J. Jiuxing. Active graphene metamaterial absorber for terahertz absorption bandwidth, intensity and frequency control. Optical Materials Express. 8, (2018) 1031-1042. Available: https://opg.optica.org/abstract.cfm?uri=ome-8-4-1031
Vahed, and S. S. Ahmadi. Graphene-based plasmonic electrooptic modulator with sub-wavelength thickness and improved modulation depth. Applied Physics B. 123, (2017) 1-6. Available: https://link.springer.com/article/10.1007/s00340-017-6845-1
Tabatabaei, M. Biabanifard, M. S. Abrishamian. Terahertz polarization-insensitive and all-optical tunable filter using Kerr effect in graphene disks arrays. Optik. 180, (2019) 526-535. Available: https://sciencedirect.com/science/article/pii/S003040261831859X
Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, G. Yang. A tunable THz absorber consisting of an elliptical graphene disk array. Physical Chemistry Chemical Physics. 20, (2018) 14357-14361. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cp/c8cp01649f
Xiao, M. Gu, S. Xiao, Broadband wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Applied optics. 56, (2017) 5458-5462. Available: https://opg.optica.org/abstract.cfm?uri=ao-56-19-5458
S. R Kaipa, A.B. Yakovlev, G.W. Hanson, Y.R. Padooru, F. Medina, F. Mesa, Enhanced transmission with a graphene-dielectric microstructure at low terahertz frequencies. Phys. Rev. B 85, (2012) 245407. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.245407
Xu, Y. Jin, L. Yang, J. Yang, X. Jian, Characteristics of electro refractive modulating based on Graphene-Oxide-Silicon waveguide. Optic Express. 20, (2012) 22398-22405. Available: https://opg.optica.org/abstract.cfm?uri=oe-20-20-22398
ZW, C. LH. Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix. Appl. Surf. Sc.i, 445, (2018) 6570. Available: https://www.sciencedirect.com/science/article/pii/S016943321830864X
Wang, F., Huang, S., Li, L., Chen, W. and Xie, Z., Dual-band tunable perfect metamaterial absorber based on graphene. Appl. Opt., 57, (2018) 6916-6922. https://opg.optica.org/abstract.cfm?uri=ao-57-24-6916.
Di, L.; Yang, H.; Xian, T.; Chen, X.J. Facile synthesis and enhanced visible light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation. Nanoscale Res. Lett. 13, (2018) 257. Available: https://link.springer.com/article/10.1186/s11671-018-2671-6