Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect
Subject Areas : Journal of Optoelectronical NanostructuresHossein Bahramiyan 1 * , Somayeh Bagheri 2
1 - Department of Physics, Marvdasht Branch, Islamic Azad University,
Marvdasht, Iran
2 - Department of Physics, Marvdasht Branch, Islamic Azad University,
Marvdasht, Iran
Keywords: Optical Properties, Modified Gaussian Quantum Dot, Impurity, Temperature and Pressure Effect,
Abstract :
In this paper, the effect of pressure, temperature and impurity on the energy
levels, binding energy, linear and nonlinear optical properties of a modified Gaussian
quantum dot are studied. In this regard, the finite element method is employed to solve
the single electron Schrodinger equation in the effective mass approximation with and
without impurity at the center of the dot. In addition, the energy levels, the wave
functions, biding energy, absorption coefficients and refractive index changes for
different pressures and temperatures are calculated. The results show that the energy
levels decrease by increasing pressure and increase by increasing the temperature for
both, with and without impurity, situations. Also, in the presence of impurity, the
refractive index changes are greater than the case without impurity and shift to higher
energies. Furthermore, by increasing the pressure, the refractive index changes increase
and shift to lower energy for both with and without impurity cases. By increasing the
pressure and temperature the absorption coefficients decrease and shift to lower energy
for all with and without impurity cases
[1] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, UK, 1997).
[2] Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, UK, 1997).
[3] M. Bouhassoune, R. Charrour, M. Fliyou, D. Bria, and A. Nougaoui, Polaronic and magnetic field effects on the binding energy of an exciton in a quantum well wire. J. Appl. Phys, 91 (2002) 232.
[4] A. I. Ekimov and A. A. Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34 (1981) 345.
[5] R. Khordad, Effect of pressure on spin–orbit interaction in a quantum wire with V-shaped cross section. Solid State Sci. 19 (2013) 63.
[6] A. Gharaati and R. Khordad, A new confinement potential in spherical quqntum dots:Modified Gaussian potential. Superlatt. Microstruct. 51 (2012) 194.
[7] R. Khordad, Pressure effect on optical properties of modified Gaussian quantum dots. Physica B, 407 (2012) 1128.
[8] M. Lu, X. J. Yang, S. S. Perry,J. W. Rabalais, Self-organized nanodot formation on MgO (100) by ion bombardment at high temperatures. Appl. Phys. Lett. 80 (2002) 2096.
[9] P. Nandakumar, C. Vijayan, Y. V. G. S. Murti, Optical absorption and toluminescence studies on CdS quantum dots in Nafion. J. Appl. Phys. 91 (2002) 1509.
[10] L. Yan, J. Seminario, Electron transport in Nano‐Gold–Silicon interfaces. J. Quantum Chem. 107 (2007) 440.
[11] I. Lazic, Z. Ikonic, V. Milanovic, R. W. Kelsall, D. Indjin, P. Harrison, Electron transport in n-doped Si/SiGe quantum cascade structures. J.Appl. Phys. 101 (2007) 93703.
[13] M. S. Atoyan, E. M, Interband light absorption in parabolic quantum dot in the presence of electrical and magnetic fields, 31 (2006) 83.
[12] Kazaryan, H. A. Sarkisyan, Interband light absorption in parabolic quantum dot in the presence of electrical and magnetic fields. Phys E, 31 (2006) 83.
[14] G. Bastard, Hydrogenic impurity states in a quantum well: A simple model.
Phys. Rev. B, 24 (1981) 4714.
[15] E. M. Kazaryan, A. V. Meliksetyan, L. S. Petrosyan, H. A. Sarkisyan, Impurity states of narrow-gap semiconductor parabolic quantum dot in the presence of extremely strong magnetic field. Phys. E, 31 (2006) 228.
[16] J. V. Crnjanski, D. M. Gvozdic Serbian, Self-Consistent Treatment of V-Groove Quantum Wire Band Structure in Nonparabolic Approximation. J. Electr. Eng, (2004) 69.
[17] D. S. Chuu, C. M. Hsiao, W. N. Mei, Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B, 46 (1992) 3898.
[18] J. L. Zhu, Exact solutions for hydrogenic donor states in a spherically rectangular quantum well. Phys. Rev.B, 39 (1988) 8780.
[19] S.G. Jayam, K. Navaneethakrishnan, Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot. Solid State Commun, 126 (2003) 681.
[20] E. Kasapoglu, H. Sari, I. Sokmen, Geometrical effects on shallow donor impurities in quantum wires. Phys.E, 19 (2003) 332.
[21] V. N. Mughnetsyan, M. G. Barseghyan, A. A. Kirakosian, Stark effects on bound polarons in polar cylindrical quantum wires with finite confining potential. Superlattices Microstruct, 44 (2008) 86.
[22] A. Bilekkaya, S. Aktas, S. E. Okan, F. K. Boz, The electronic properties of a coaxial square GaAs/AlxGa1−xAs quantum well wire in an electric field. Superlattices Microstruct, 44 (2008) 96.
[23] R. Khordad, Electronic properties of two interacting electrons in a quantum pseudodot under magnetic field: Perturbation theory and two parameters variational procedure. Phys. E, 62 (2013) 166.
[24] E. Kasapoglu, F. Ungan, H. Sari, I. Sokmen, The hydrostatic pressure and temperature effects on donor impurities in cylindrical quantum wire under the magnetic field. Phys. E, 42 (2010) 1623.
[25] P. Villamil, Donor in cylindrical quantum well wire under the action of an applied magnetic field. Phys. E, 42 (2010) 2436.
[26] R. Khordad, Effect of pressure on spin–orbit interaction in a quantum wire with V-shaped cross section. Solid State Sci, 19 (2013) 63.
[27] S.T. Perez-Merchancano, R. Franco, J. Silva-Valencia, Impurity states in a spherical GaAs–Ga1-x AlxAs quantum dots: Effects of hydrostatic pressure .Microelectron. J, 39 (2008) 383.
[28] E. Tangarife, M.E. Mora-Ramos, C.A. Duque, Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots. Superlatt. Microstruct. 49 (2011) 275.
[29] A. Sivakami, M. Mahendran, Hydrostatic pressure and temperature dependence of correlation energy in a spherical quantum dot. Superlatt. Microstruct, 47 (2010) 530.
[30] N. Leino, T.T. Rantala, Temperature Effects on Electron Correlations in Two Coupled Quantum Dots. Few-Body Syst, 40 (2007) 237.
[31] P. Nithiananthi, K. Jayakumar, Effect of temperature on the binding energy of low lying excited states in a quantum well. Phys. B, 17 (2003) 5811.
[32] M. J. Karimi, G. Rezaei, M, Nazari, Linear and nonlinear optical properties of multilayered spherical quantum dots: effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature. Journal of Luminescence, 145 (2014) 55.
[33] F. S. Levin and J. Shertzer, Finite-element solution of the Schrödinger equation for the helium ground state. Phys. Rev. A, 32(1985) 3285.
[34] D. Ahn, S. L. Chuang, Calculation of linear and nonlinear intersub band optical absorptions in a quantum well model with an applied electric field.