Ultra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
Keywords: Nonlinear phenomena, Photon Gas Plasma, Radiation, Relativistic Solitons,
Abstract :
We have studied the formation of relativistic solitary waves due to nonlinear
interaction of strong electromagnetic wave with the plasma wave. Here, our plasma is
relativistic both in temperature and in streaming speed. A set of equations consisting of
scalar and vector potentials together with a third order equation for the enthalpy in
photon gas plasma is obtained analytically. Solutions with single-humped for the scalar
potential and single and double-humped for the vector potential profiles are illustrated
numerically. It is shown that the drifting velocity of moving solitons and plasma fluid
velocity both play an important role in the formation of the solutions. The results show
that the amplitude of the potentials increases for higher values of the plasma
temperatures for the region that the flow velocity of the plasma is larger than the solitary
wave velocity. For the region with larger amount of the soliton's velocity, the results
show opposite behavior. It is also found that in the region where the plasma fluid
velocity exceeds the soliton drifting velocity, all the solutions are excited at higher
temperatures relative to the other area.
[1] L. Safaei, M. Hatami and M. B. Zarandi. Numerical Analysis of Stability for
Temporal Bright Solitons in a PT-Symmetric NLDC. J. Optoelectronical
Nanostructures. 2(3) (2017) 69-78.
Available: http://jopn.miau.ac.ir/article_2433.html
[2] D. Farina and S. V. Bulanov. Relativistic Electromagnetic Solitons in the
Electron-Ion Plasma. Phys. Rev. Lett. 86 (2001) 5289-5292.
Available: https://doi.org/10.1103/PhysRevLett.86.5289
[3] S. Chaudhuri and A R. Chowdhury. Nonlinear Landau damping in a relativistic electron-ion plasma–non-local nonlinear Schrödinger-equation and Krylov Bogoliubov Mitropolsky method. Phys. Scripta 93(7) (2018) 075601. Available: https://doi.org/10.1088/1402-4896/aac60d
[4] A. Keshavarz1 and Z. Abbasi. Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystalcircuit. J. Optoelectronical Nanostructures. 1(1) (2016) 81-90.
Available: http://jopn.miau.ac.ir/article_1817.html
[5] M.J. Iqbal, H.A. Shah, W. Masood and N.L. Tsintsadze. Nonlinear ion acoustic waves in a relativistic degenerate plasma with Landau diamagnetism and electron trapping. Eur. Phys. J. D. 72(11) (2018) 192. Available: http://dx.doi.org/10.1140/epjd/e2018-90309-2
[6] L. Safaei, M. Hatami and M. B. Zarandi. Effect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC. J. Optoelectronical Nanostructures. 3(3) (2018) 37-46.
Available: http://jopn.miau.ac.ir/article_3044.html
[7] G. Sánchez-Arriaga, E. Siminos, V. Saxena and I. Kourakis. Relativistic breather-type solitary waves with linear polarization in cold plasmas. Phys. Rev. E. 94 (2016) 029903. Available:
DOI: 10.1103/PhysRevE.91.033102.
[8] N. Ratan, N. J. Sircombe, L. Ceurvorst, J. Sadler, M. F. Kasim, J. Holloway, M. C. Levy, R. Trines, R. Bingham and P. A. Norreys. Dense plasma heating by crossing relativistic electron beams. Phys. Rev. E. 95 (2017) 013211. Available: https://doi.org/10.1103/PhysRevE.95.013211
[9] Z. Zare and A. gharaati. Investigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry. J. Optoelectronical Nanostructures. 3(3) (2018) 27-36.
Available: http://jopn.miau.ac.ir/article_3043.html
[10] E. Heidari, M. Aslaninejad and H. Eshraghi. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma .Plasma Phys. Control. Fusion. 52 (2010) 075010. Available: https://doi.org/10.1088/0741-3335/52/7/075010
[11] G. Lehmann and K. H. Spatschek. Poincaré analysis of wave motion in ultrarelativistic electron-ion plasmas. Phys. Rev. E. 83 (2011) 036401. Available: https://doi.org/10.1103/PhysRevE.83.036401
[12] D. Lu, Z. L. Li and B. S. Xie. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma. Phys. Rev. E. 88 (2013) 033109.
Available: https://doi.org/10.1103/PhysRevE.88.033109
[13] M. Lontano, S. V. Bulanov, M. Passoni and T. Tajima. A kinetic model for the one-dimensional electromagnetic solitons in an isothermal plasma. Phys. Plasmas. 9 (2002) 2562-2568.
Available: http://dx.doi.org/10.1063/1.1476307
[14] P. K. Shukla, M. Marklund and B. Eliasson. Nonlinear dynamics of intense laser pulses in a pair plasma. Phys. Lett. A. 324 (2004) 193.
Available: https://doi.org/10.1016/j.physleta.2004.02.065
[15] E. Heidari, M. Aslaninejad, H. Eshraghi and L. Rajaee. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas. Phys. Plasmas. 21 (2014) 032305.
Available: http://dx.doi.org/10.1063/1.4868729
[16] T. Tatsuno, M. Ohhashi, V. I. Berezhiani and S. V. Mikeladze. Self-guiding electromagnetic beams in relativistic electron–positron plasmas. Phys. Lett. A. 363 (2007) 225-231.
Available: https://doi.org/10.1016/j.physleta.2006.10.096
[17] C. S. Jao and L. N. Hau. Electrostatic solitons and Alfvén waves generated by streaming instability in electron-positron plasmas. Phys. Rev. E. 98 (2018) 013203.
Available: https://doi.org/10.1103/PhysRevE.98.013203
[18] B. Eliasson and P. K. Shukla. Kinetic effects on relativistic solitons in plasmas. Phys. Lett. A. 354 (2006) 453-456.
Available: https://doi.org/1016/j.physleta.2006.01.083