بررسی روش مکانیسم هوشمند دفاعی در برابر عملکرد سرویس انکار توزیع شده اینترنت اشیا
محورهای موضوعی : فناوری اطلاعاتپریسا دانشجو 1 * , رضا غفاری دیزجی 2
1 - دانشیار،دانشکده فنی مهندسی،دانشگاه آزاد اسلامی- واحد تهران غرب،تهران،ایران
2 - دانشجو کارشناسی ارشد دانشکده فنی آژاد واحد تهران غرب
کلید واژه: امنیت اینترنت اشیاء, حملات DDoS, محاسبات لبه, هوش مصنوعی,
چکیده مقاله :
اینترنت اشیا یک فناوری پیشرو است که امکان اتصال گستردهای از دستگاههای مختلف را برای ارائه خدمات و خودکارسازی در حوزههای مختلف از زندگی روزمره تا سامانههای زیرساختی حیاتی فراهم میکند. بااینحال، این دستگاهها به حملات مختلف ازجمله، حملات سرویس انکار توزیعشده حساس هستند. هدف از کار انداختن یک دستگاه معتبر و جلوگیری از دسترسی کاربران معتبر به سرویسها یا منابع شبکه است. این حملات میتوانند از طریق منابع حمله توزیعشده، منابع حمله متنوع و تغییرات ترافیک انجام شوند. روش دفاع هوشمندانه که بانام محافظ جریان برای مقابله با این حملات ارائهشده است. این روش شامل تشخیص، شناسایی، طبقهبندی و کاهش حملات هست که دو مؤلفه اصلی به نام فیلتر جریان و راهانداز جریان است که برای شناسایی، تشخیص، طبقهبندی و کاهش حملات استفاده میشود. الگوریتم تشخیص حملات بر اساس تغییرات ترافیک ارائهشده و دو مدل یادگیری ماشین به نام حافظه بلندمدت- کوتاهمدت و شبکه عصبی پیچشی یا همگشتی برای شناسایی و طبقهبندی حملات سرویس انکار توزیعشده ارائهشده است. این مدلها با تأخیر مناسبی در سرورهای لبه که قدرت محاسباتی بالاتری نسبت به یک کامپیوتر شخصی دارند، قابلیت استفاده دارند. راهکارهایی برای رفع محدودیتها و نقاط ضعف در حفاظت از سامانههای اینترنت اشیا در برابر حملات امنیتی ازجمله افزایش قدرت محاسباتی و فضای ذخیرهسازی، استفاده از پروتکلهای امنتر، استفاده از فنهای دفاعی پیشرفته، توسعه روشهای هوش مصنوعی و یادگیری عمیق استفاده کرد.
The Internet of Things is a leading technology that enables widespread connectivity of various devices to provide services and automation in various areas of daily life to critical infrastructure systems. However, these devices are vulnerable to various attacks, including Distributed Denial of Service (DDoS) attacks. The goal is to deploy a valid device and prevent legitimate users from accessing services or network resources. These attacks can be carried out through distributed attack resources, diverse attack resources, and traffic variations. An intelligent defense method called Flow Guardian is presented to combat these attacks. This method involves detection, identification, classification, and reduction of attacks, with two main components called Flow Filter and Flow Initiator used for identification, detection, classification, and reduction of attacks. An attack detection algorithm based on traffic variations is presented, and two machine learning models called Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) are proposed for the identification and classification of DDoS attacks. These models can be used with appropriate delay in edge servers, which have higher computational power compared to a personal computer. Solutions to overcome limitations and weaknesses in protecting Internet of Things systems against security attacks include increasing computational power and storage space, using more secure protocols, employing advanced defense techniques, and developing artificial intelligence and deep learning methods.
1. Ahmed Raoof, Ashraf Matrawy, Chung-Horng Lung,Secure Routing in IoT: Evaluation of RPL’s Secure Mode under Attacks. Computer science cryptography and security Carleton (University Canada, 2019)
2. Cao, K., et al., Enhancing physical-layer security for IoT with nonorthogonal multiple access assisted semi-grant-free transmission. IEEE Internet of Things Journal, 2022. 9(24): p. 24669-24681.
3. Chen, P., et al., Effectively detecting operational anomalies in large-scale iot data infrastructures by using a gan-based predictive model. The Computer Journal, 2022. 65(11): p. 2909-2925.
4. El-Hajj, M., et al., A survey of internet of things (IoT) authentication schemes. Sensors, 2019. 19(5): p. 1141.
5. Glissa, G., A. Rachedi, and A. Meddeb. A secure routing protocol based on RPL for Internet of Things. in 2016 IEEE Global Communications Conference (GLOBECOM). 2016. IEEE.
6. Gupta, B., et al., Smart defense against distributed Denial of service attack in IoT networks using supervised learning classifiers. Computers & Electrical Engineering, 2022. 98: p. 107726.
7. Khanna, A. and S. Kaur, Internet of things (IoT), applications and challenges: a comprehensive review. Wireless Personal Communications, 2020. 114: p. 1687-1762.
8. Kore, A. and S. Patil, Cross layered cryptography based secure routing for IoT-enabled smart healthcare system. Wireless Networks, 2022: p. 1-15.
9. Li, B., et al., Dynamic event-triggered security control for networked control systems with cyber-attacks: A model predictive control approach. Information Sciences, 2022. 612: p. 384-398.
10. Stoyanova, M. Nikoloudakis, Y. Panagiotakis, S. Pallis, E. & Markakis, E. K. A survey on the internet of things (IoT) forensics: Challenges, approaches, and open issues. IEEE Commun. Surv. Tutor. 22(2), 1191–1221 (2020).
11. Hussain, F., Abbas, S. G., Husnain, M., Fayyaz, U. U., Shahzad, F., & Shah, G. A. (2020, November). IoT DoS and DDoS attack detection using ResNet. In 2020 IEEE 23rd International Multitopic Conference (INMIC) (pp. 1-6). IEEE.
12. Roopak, M., Tian, G. Y., & Chambers, J. (2020). Multi‐objective‐based feature selection for DDoS attack detection in IoT networks. IET Networks, 9(3), 120-127.
13. R., Russello, G., & Zanna, P. (2021). Mitigating ddos attacks in sdn-based iot networks leveraging secure control and data plane algorithm. Applied Sciences, 11(3), 929
14. .Bhayo, J., Jafaq, R., Ahmed, A., Hameed, S., & Shah, S. A. (2021). A time-efficient approach toward DDoS attack detection in IoT network using SDN. IEEE Internet of Things Journal, 9(5), 3612-3630.
15. Jia, Y., Zhong, F., Alrawais, A., Gong, B., & Cheng, X. (2020). Flowguard: An intelligent edge defense mechanism against IoT DDoS attacks. IEEE Internet of Things Journal, 7(10), 9552-9562.