بررسی تأثیر ارتعاشات فراصوت بر خواص مکانیکی ورق دو لایه فولاد کم کربن - تیتانیوم خالص در فرآیند شکل دهی افزایشی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمحمدرضا ساختمانیان 1 , محمد هنرپیشه 2 * , سعید امینی 3
1 - دانشجوی دکتری- گروه ساخت و تولید- دانشکده مهندسی مکانیک- کاشان
2 - استادیار گروه ساخت و تولید- دانشکده مهندسی مکانیک- کاشان
3 - دانشیار– گروه ساخت و تولید– دانشکده مهندسی مکانیک- کاشان
کلید واژه: خواص مکانیکی, ارتعاشات فراصوت, شکلدهی افزایشی, ورق دو لایه,
چکیده مقاله :
شکل دهی افزایشی ورق، یکی از فرایندهای تولید قطعات فلزی ورقی بدون استفاده از قالب است که به منظور نمونه سازی سریع، کاهش زمان و هزینههای ساخت قطعات گسترش یافته است. در این فرآیند نیز همانند دیگر فرآیندهای شکلدهی کاهش نیروی شکلدهی و بهبود خواص مکانیکی قطعه حاصل مدنظر میباشد که برای این منظور روشهای مختلفی گسترش یافته است. یکی از این روشها، استفاده از ارتعاشات فراصوت و اعمال آن بر روی فرآیند میباشد. در این مطالعه به منظور بهبود خواص مکانیکی قطعه ساخته شده در فرآیند شکلدهی نموی از اعمال ارتعاشات فراصوت بر روی ابزار استفاده شده است. هدف از انجام این مطالعه، بررسی تأثیر ارتعاشات فراصوت بر خواص مکانیکی قطعات ساخته شده در فرآیند شکلدهی نموی است. برای این منظور تجهیزات مناسب برای انجام این فرآیند طراحی و ساخته شد. سپس نمونههای هرمی شکل تحت شرایط مختلفی از سرعتهای پیشروی افقی و عمودی تحت تأثیر ارتعاشات فراصوت تولید شد و آزمونهای سختی و کشش بر روی نمونههای تولید شده انجام پذیرفت. نتایج بهدست آمده نشان داد که تحت تأثیر ارتعاشات فراصوت، سختی 50 درصد و استحکام کششی 30 درصد افزایش یافته است. مطالعات ریزساختاری بر روی نمونهها نشان داد که به دلیل افزایش دمای نمونهها در نتیجه تبدیل ارتعاشات فراصوت به گرما فرآیند تبلور مجدد پیوسته در ساختار میکروسکوپی نمونهها به وقوع پیوسته است که این فرآیند، منجر به ریز شدن دانهها و در نتیجه بهبود خواص مکانیکی شده است.
Incremental Sheet forming (ISF) is one of the processes for producing sheet metal parts without the use of mold that has been developed to allow rapid prototyping and reduced time and cost of fabricating parts. In this process, as well as other forming processes, reducing of the forming force and improving of the mechanical properties of the created part are considered. For which purpose, various methods have been developed. One of these methods is the use of ultrasonic vibration and its application to the process. In this study, ultrasonic vibrations were used on the tool to improve the mechanical properties of the piece made in the incremental sheet forming process. The purpose of this study was to investigate the effect of ultrasonic vibration on the mechanical properties of parts made in the incremental forming process. So, suitable equipment for this process was designed and constructed. Then, pyramidal samples were produced under different conditions of horizontal and vertical feed rates under the influence of ultrasonic vibration and hardness and tensile testing were performed on the produced specimens. The results showed that hardness and tensile strength increased by 50% and 30% respectively, due to the applying ultrasonic vibration. Microstructural studies on the samples showed that due to the temperature increase of the samples as a result of the conversion of ultrasonic vibration into the heat, the continuous dynamic recrystallization (CDRX) process occurred in the microstructure of the samples, which resulted in the grain refinement and improvement in the mechanical properties.
References:
1- Kitazawa K, Advanced Technology of Plasticity.Beijing: International Academic Publisher, 1899-1904, 1993.
2- Matsubara M, Tanaka S, Nakamura T, JSME International Journal, 39, 156-163, 1996.
3- M. Honarpisheh, M. J. Abdolhoseini, S. Amini, Int J Adv Manuf Technol. 83, 2027–2037, 2016.
4- M B Silva, M Skjoedt, A G Atkins, N Bay, and P A F Martins, J Strain Anal Eng Des., 43,15-35, 2008.
5- Blaha, F. and Langenecker, B., Naturwissenschaften,42(20),556-556, 1955.
6- Nevill, G.E. and Brotzen, F.R., The Rice Institute, Solid Science Division, Air Force Office of Scientific Research, ARDC: Washington, 1957.
7- Izumi, O., Oyama, K. and Suzuki, Y., Trans Jpn Inst Met., 7(3),158-162, 1966.
8- Jin, M., Thipprakmas, S., Noguchi, H., Hayashi, M. and Murakawa, A., Simulation of Materials Processing: Theory, Methods and Applications, 475-479, (2001).
9- Petukhow, V.L., Abramov, O.V., Zubko, A.M., Manegin and Yu, V., LIGHT MET AGE, 31, 6-8, 1973.
10- Tsujino, J., Ueoka, T., Takiguchi, K., Satoh, H. and Takahashi, K., Jpn. J. Appl. Phys., 32, 2447-2451, 1993.
11- Tawakoli, T. and Azarhoushang, B., Int J Mach Tool Manufact,48, 1585-1591, 2008.
12- Brehl, D.E. and Dow, T.A., PRECIS ENG, 32, 153-172, 2008.
13- Ahmed, N., Mitrofanov, A.V., Babitsky, V.I. and Silberschmidt, V.V, MPSVA VI, Proceedings, 5-6, 351-357, 2006.
14-Chang-Min Suha, Gil-Ho Songb, Min-Soo Suha, Young-Shik Pyoun, Mater Sci Eng A, 443, 101-106, 2007.
15- Hung, J.C. and Hung, C.H., Ultrasonics, 43(8), 692-698, 2005.
16- Jung-Chung Hung, Chih-Chia Lin, Mater. Des., 45, 412-420, 2013.
17.Chang-Min Suha, Gil-Ho Songb, Mater Sci Eng A, 443, 101-106, 2007.
18- Wang Ting, Wang Dongpo, Appl. Surf. Sci., 255, 1824-1829, (2008).
19- Mehdi Vahdati, Ramezanali Mahdavinejad and Saeid Amini, J. Eng. Manuf, 231,971-982, 2015.
20- Saeid Amini, Ahmad Hosseinpour Gollo, Hossein Paktinat, Int J Adv Manuf Technol., 90, 1569-1578, 2017.
21- 103. F. Ahmadi, M. Farzin, M. Mandegari, Ultrasonics, 63, 111-117, 2015.
22- Saeed Bagherzadeh, Karen Abrinia, Yanfei Liu, Qingyou Han, Int J Adv Manuf Technol., 88, 1-4, 229-240, 2017.
23- Mohammadali Rasooli, Mehrshad Moshref-javadi, Aboozar Taherizadeh, Int J Adv Manuf Technol., 77, 9-12, 2117-2124, 2015.
24- L. X. Lu, J. Sun, L. Li, Q. C. Xiong, Int J Adv Manuf Technol., 87, 9-12, 2533-2539, 2016.
25- Wilko C. Emmens, Formability, springer, The Netherlands, 67-70, 2011.
26.
26- Honarpisheh, M., Asemabadi, M., Sedighi, M. Materials & Design 37, 122-127, 2012.
27- Kasmaei M, Honarpisheh M. Journal of Modares Mech Eng 15 (1): 397-402, 2015.
28- Honarpisheh, M., Niksokhan, J., Nazari, F., Metallurgical Research & Technology 113(1), 105, 2016.
29- Sedighi, M., M. Honarpisheh. Strength of Materials 44(6), 693-698, 2012.
30- Honarpisheh, M., Dehghani, M., Haghighat, E. Procedia Materials Science, 11, 1-5, 2015.
31- M. R. Sakhtemanian, M. Honarpisheh, S. Amini., Int J Adv Manuf Technol., 10.1007/s00170-017-1462-z, 2017.
32- Honarpisheh, M., & Gheysarian, A. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 7(1), 73-83, 2017.
33. Heisel, U., Wallaschek, J., Eisseler, R. and Potthast, C., CIRP Ann Manuf Technol., 57, 53-56, 2008.
34- SAAJ STEEL CORPORATION, Website: www.saajsteel.com
35- B. Eghbali, Materials Letters, 61, 4006-4010, 2007.
36- A. Gholinia, P.B. Prangnell, M.V. Markushev, Acta Materialia, 48, 1115-1130, 2000.
37. B. Eghbali, A. Abdollah-Zadeh, H. Beladi, P.D. Hodgsonc, Mater Sci Eng A, 435-436, 499–503, 2006.
38- Zhipeng Zeng, Yanshu Zhang, Stefan Jonsson, Mater. Des., 30, 3105-3111, 2009.
39- Seyed Vahid Sajadifar and Guney Guven Yapici, JMEPEG, 23,1834-1844, 2014.
_||_