بهبود خواص مکانیکی فولادهای زنگ نزن پزشکی به وسیله تفجوشی فاز مایع
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمحسن جوانبخت 1 , محمد جعفر هادیانفرد 2 , عرفان صلاحی نژاد 3
1 - دانشکده مهندسی، بخش مهندسی مواد، دانشگاه شیراز، شیراز، ایران.
2 - دانشکده مهندسی، بخش مهندسی مواد، دانشگاه شیراز، شیراز، ایران.
3 - دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
کلید واژه: سختی, سایش, تفجوشی فاز مایع, کاشتنی فولاد زنگ نزن,
چکیده مقاله :
در این پژوهش، نمونه هایی از فولاد زنگ نزن آستنیتی بدون نیکل و نانوساختار با ترکیب
ASTM F2581: Fe-17Cr-10Mn-3Mo-0.4Si-0.5N-0.2C (wt%) به روش متالورژی پودر (آلیاژسازی مکانیکی و تفجوشی حالت مایع به کمک افزودنی آلیاژ یوتکتیک Mn-Si)، برای کاربردهای پزشکی تولید و سپس ساختار، سختی، ریزسختی و مقاومت سایشی آنها بررسی گردید. برای بررسی ریختشناسی پودرها و تعیین مکانیزم سایش نمونه های تفجوشی شده، از میکروسکوپ الکترونی روبشی (SEM) استفاده شد. افزون بر این، اثر مقدار کمک سینتر بر چگالی، سختی، ریزسختی و مقاومت سایشی نمونه ها بررسی شد. با توجه به تصاویر میکروسکوپ الکترونی روبشی، ساز و کار غالب سایش این نوع فولاد سایش چسبان تشخیص داده شد. با بررسی نمونه های تولید شده در حضور 0 تا 8 درصد وزنی افزودنی، کمترین مقدار تخلخل و بالاترین دانسیته، سختی، ریزسختی و مقاومت سایشی برای نمونه حاوی 6 درصد کمک سینتر حاصل شد. خواص مکانیکی مناسب این نمونه در قیاس با سایرین، با داشتن کمترین مقدار تخلخل (حدود 10%)، ساختار بلوری نانومتری و وجود نیتروژن و کربن در ساختار توضیح داده شد. در حضور این مقدار افزودنی، تفجوشی فاز مایع به خوبی فعال شد و با نفوذ افزودنی و زمینه در یکدیگر خواص مکانیکی بهبود نسبتاً زیادی نسبت به نمونه بدون افزودنی پیدا کرد
In this research, nickel-free austenitic stainless steel samples with the chemical composition of ASTM F2581 were produced by powder metallurgy (mechanical alloying and liquid-phase sintering by a Mn-Si eutectic alloy additive) for medical applications. Afterwards, their structure, hardness and wear behavior were investigated. The structure of the powders and sintered samples was studied by scanning electron microscopy, optical microscopy, image analyzer method, density measurements and ferritometry. Also, the effect of the sintering aid content on density, hardness and wear behavior was focused on. By investigating the samples with 0 to 8 % additive, the lowest porosity level and the highest hardness and wear resistance were obtained for the sample having 6 % sintering aid. The optimum mechanical properties of this sample, in comparison with the others, are attributed to the lowest porosity level (about 10%), the nanocrystalline structure and the presence of nitrogen and carbon in the structure. In the presence of this amount additive, liquid-phase sintering was activated, the mechanical properties were improved compared to the additive-free sample.
Refrences
1- و. فتحی و م. ح. مرتضوی، "مقدمه ای بر بیومواد (مواد زیستی پزشکی)"، انتشارات اردکان، 1381.
2- G. Balachandran, M. L. Bhatia, N. B. Ballal, and P. K. Rao, “Some theoretical Aspects on Designing Nickel Free High Nitrogen Austenitic Stainless Steels”, ISIJ International, Vol. 41, pp. 1018-1027, 2001.
3- P. J. Uggowitzer, R. Magdowski, and M. O. Speidel, “Nickel Free High Nitrogen Austenitic Steels”, ISIJ International, Vol. 36, pp. 901-908, 1996.
4-C. Suryanarayana, “Mechanical Alloying and Milling.” Progress in Materials Science, Vol. 46, pp. 1-184, 2001.
5- R. M. German, “Liquid Phase Sintering”, Plenum Press, New York, NY,1985.
6- S. Farooq, A. Bose and R. M. German, “Theory of Liquid Phase Sintering Model Experiments on W-Ni-Fe Alloy System ", Progress in Powder Metallurgy, Vol.43, pp 65-77, 1987.
7- F. Akhtar, “Effect of Additive Cu-10Sn Alloy on Sintering Behavior of Elemental Powders in Composition of 465 Stainless Steel”, Journal of Iron And Steel Research, International, Vol. 14, pp. 61-64, 2007.
8- D. Uzunsoy, “The characterisation of PM 304 Stainless Steel Sintered in the Presence of a Copper Based Additive”, Materials Letters, Vol. 61, pp. 10–15, 2007.
9- E. Salahinejad, R. Amini, M. Marasi and M. J. Hadianfard, "The Effect of Sintering Time on the Densification and Mechanical Properties of a Mechanically Alloyed Cr–Mn–N stainless Steel",
Materials and Design, Vol. 31, pp. 527–532,2010.
10-E. Salahinejad, R. Amini and M.J. Hadianfard, " Contribution of Nitrogen Concentration to Compressive elastic Modulus of 18Cr–12Mn–xN Austenitic Stainless Steels
Developed by Powder Metallurgy", Materials and Design, Vol. 31, pp. 2241–2244, 2010.
11- E. Salahinejad, M. J. Hadianfard, M. Ghaffari, , Sh. Bagheri Mashhadi, and A. Okyay, “Liquid-Phase Sintering of Medical-Grade p558 Stainless Steel Using a New Biocompatible Eutectic Additive”, Materials Letters, Vol. 74, pp. 209–212, 2012.
12- ASM Handbook, Alloy Phase Diagrams, ASM International, Volume 3, 1992.
13- E. Salahinejad, M.J. Hadianfard, M. Ghaffari, S. Bagheri Mashhadi, Ali K. Okyay, "Fabrication of Nanostructured Medical-Grade Stainless Steel by mechanical Alloying and Subsequent Liquid-Phase Sintering", Metallurgical and Materials Transactions A, Vol. 43, pp. 2994-2998, 2012.
14- R. Amini, E. Salahinejad, M.J. Hadianfard, E. Askari Bajestani and M. Sharifzadeh, “A Novel Approach to Quantify Nitrogen Distribution in Nanocrystalline-Amorphous Alloys”, Journal of Alloys and Compounds, Vol. 509, pp. 2248–2251, 2011.
15- علیرضا عبدالهی، علی علیزاده، "تولید نانوکامپوزیت دو جزیی فوق مستحکم زمینه آلومینیومی به روش آلیاژسازی مکانیکی و اکستروژن داغ و بررسی خواص مکانیکی آن" ، مجله مواد نوین، جلد 4، شماره 1، ص 83- 98، پاییز 1392
16- M. Javanbakht, M.J. Hadianfard, E. Salahinejad, “Microstructure and Mechanical Properties of a New Group of Nanocrystalline Medical-Grade Stainless Steels Prepared by Powder Metallurgy” Alloys and Compounds, vol. 624, pp. 17–21, 2015.
17- K. Kameo, K. Nishiyabu, K. Friedrich, S. Tanaka, and T. Tanimoto, “Sliding Wear Behavior of Stainless Steel Parts Made by Metal Injection Molding (MIM).” Wear, Vol. 260, pp. 674–686, 2006.
18- H. O. Gulsoy, “Dry Sliding Wear in Injection Molded 17-4 PH Stainless Steel Powder with Nickel Boride Additions.”, Wear, Vol. 262, pp. 491–497, 2007.
19- E. Salahinejad, R. Amini, M. Marasi, M.J. Hadianfard, “Microstructure and wear Behavior of a Porous Nanocrystalline Nickel-free Austenitic Stainless Steel Developed by Powder Metallurgy“, Materials and Design, vol. 31, pp. 2259–2263, 2010.
20-M. Sumita, T. Hanawa, and S.H. Teoh, “Development of Nitrogen containing Nickel-Free Austenitic Stainless Steels for Metallic Biomaterials- Review”, Materials Science and Engineering C, Vol. 24, pp. 753-760, 2004.