بررسی خواص مکانیکی کامپوزیت هایAl-Al2O3تولید شده به روش پلاسمای جرقه ای(SPS)
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینداود خادمی 1 * , ابوالفضل باباخانی 2
1 - کارشناس ارشد مهندسی مواد، آزمایشگاه مرکزی دانشگاه فردوسی مشهد
2 - دانشیار، گروه مواد و متالورژی، دانشگاه فردوسی مشهد
کلید واژه: استحکام فشاری, Al2O3, کامپوزیتهای زمینه آلومینیومی, پلاسمای جرقهای,
چکیده مقاله :
در پژوهش حاضر، کامپوزیت Al- Al2O3 به روش SPS که یکی از روشهای نوین تف جوشی پودرهای فلزی است، تولید شد. ریز ساختار نمونههای تولید شده با استفاده از میکروسکوپ نوری بررسی شد و تشخیص عناصر و ترکیبات حاضر در ساختار کامپوزیت با میکروسکوپ الکترونی روبشی (SEM) مجهز به سیستم EDS صورت گرفت. همچنین به منظور بررسی اثر مقادیر Al2O3، آزمونهای استحکام فشاری، سختی و بررسی دانسیته نسبی بر روی نمونههای حاوی (15-0) درصد وزنی Al2O3 انجام شد. نتایج نشان میدهد که با افزایش درصد Al2O3 سختی برینل نمونهها تا حدود95% افزایش یافته است. در نمونه با 5 درصد وزنیAl2O3 استحکام نسبت به نمونه آلومینیوم خالص حدود 40 درصد افزایش پیدا کرده است و توزیع یکنواخت ذرات Al2O3 در زمینه Al مشاهده میشود؛ اما با افزایش درصد وزنی ذرات Al2O3 در نمونههای حاوی 10و15 درصد، کاهش استحکام دیده میشود که دلیل آن، با توجه به بررسیهای ریزساختاری وکاهش دانسیته نسبی از98/0 به حدود88/0، مربوط به عدم فشرده شدن مناسب و ایجاد تخلخل در این نمونهها است.
Composite of Al-Al2O3 have been fabricated by spark plasma sintering (SPS) that is known as one of advanced methods of sintering for metal powders. The microstructural studies and elemental qualitative analyses of composites were carried out by Optical Microscopy, Scanning Electron Microscope (SEM) and EDS analysis.Also, In order to study of mechanical properties, the compressive strength, hardness tests and relative density of samples with zero to 15 Wt% Al2O3 were investigated. The results show increases of hardness up to 95% by increasing of Al2O3 amount, sensitively increasing of strength up to 40% in samples with 5 Wt% Al2O3. Furthermore, in these samples Al2O3 particles are homogenously dispersed in Al matrix. In following, strength amounts are decreased by increasing of Al2O3 Wt% up to 10 and 15%.According to microstructural studies and reducing the relative density of 0.98 to 0.88 is related to unsuitable compressed and the creation of porosity in samples.
1-Z. R. Hesabi, A. Simchi, S. S. Reihani. "Structural evolution during mechanical milling of nanometric and micrometric Al 2 O 3 reinforced Al matrix composites". Materials Science and Engineering: A. 2006;428(1):159-68.
2-J. Han. Processing Microstructure Evolution and Properties of Nanoscale Aluminum Alloys: University of Cincinnati; 2005.
3- M. Hossein-Zadeh, O. Mirzaee, P. Saidi. "Structural and mechanical characterization of Al-based composite reinforced with heat treated Al 2 O 3 particles". Materials & Design. 2014;54:245-50.
4-م. باغچه سرا, ح. عبدی زاده, ح. بهاروندی. "بررسی ریز ساختار کامپوزیتهای زمینه آلومینیوم با فاز تقویت کننده نانو منیزیا تولید شده به روش اختلاط مستقیم". فصلنامه علمی-پژوهشی مواد نوین. 2015;5(18):117-28.
5-K. Edalati, M. Ashida, Z. Horita, T. Matsui, H. Kato. "Wear resistance and tribological features of pure aluminum and Al–Al 2 O 3 composites consolidated by high-pressure torsion". Wear. 2014;310(1):83-9.
6-G. Zhao, Z. Shi, N. Ta, G. Ji, R. Zhang. "Effect of the heating rate on the microstructure of in situ Al 2 O 3 particle-reinforced Al matrix composites prepared via displacement reactions in an Al/CuO system". Materials & Design. 2015;66:492-7.
7-M. Rahimian, N. Ehsani, N. Parvin, H. reza Baharvandi. "The effect of particle size, sintering temperature and sintering time on the properties of Al–Al 2 O 3 composites, made by powder metallurgy". Journal of Materials Processing Technology. 2009;209(14):5387-93.
8-G. Iacob, V. G. Ghica, M. Buzatu, T. Buzatu, M. I. Petrescu. "Studies on wear rate and micro-hardness of the Al/Al 2 O 3/Gr hybrid composites produced via powder metallurgy". Composites Part B: Engineering. 2015;69:603-11.
9-Z. Munir, U. Anselmi-Tamburini, M. Ohyanagi. "The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method". Journal of Materials Science. 2006;41(3):763-77.
10-J. Liu, Y. Wang, F. Yang, K. Chen, L. An. "Grain refining in spark plasma sintering Al 2 O 3 ceramics". Journal of Alloys and Compounds. 2015;622:596-600.
11-J. Monnier, Y. Champion, L. Perrière, B. Villeroy, C. Godart. "Spark plasma sintering and hydrogen pre-annealing of copper nanopowder". Materials Science and Engineering: A. 2015;621:61-7.
12-D. Perera, M. Tokita, S. Moricca. "Comparative study of fabrication of Si 3 N 4/SiC composites by spark plasma sintering and hot isostatic pressing". Journal of the European Ceramic Society. 1998;18(4):401-4.
13- S.-X. Song, Z. Wang, G.-P. Shi. "Heating mechanism of spark plasma sintering". Ceramics International. 2013;39(2):1393-6.
14-E. A. Olevsky, S. Kandukuri, L. Froyen. "Consolidation enhancement in spark-plasma sintering: Impact of high heating rates". Journal of Applied Physics. 2007;102(11):114913.
15-S. Diouf, A. Molinari. "Densification mechanisms in spark plasma sintering: effect of particle size and pressure". Powder technology. 2012;221:220-7.
16-H. Kwon, M. Leparoux, A. Kawasaki. "Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering". Journal of Materials Science & Technology. 2014;30(8):736-42.
17-A. Ebrahimnejad, S. A. Sajjadi. "Damage mechanisms in aluminum-matrix composites reinforced with nano-alumina particles". International Journal of Materials Research. 2015;106(10):1107-10.
18-M. Rahimian, N. Parvin, N. Ehsani. "Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy". Materials Science and Engineering: A. 2010;527(4):1031-8.
19-M. Rahimian, N. Parvin, N. Ehsani. "The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al 2 O 3 composite". Materials & Design. 2011;32(2):1031-8.
_||_