مشخصهیابی ریزساختاری و بررسی خواص مکانیکی سوپرآلیاژ IN617 پس از کارکرد طولانی مدت
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمحسن مهدیزاده 1 , حسن فرهنگی 2 *
1 - دانشجوی دکترای گروه مهندسی مواد ومتالوژی،پردیس البرز ،دانشگاه تهران،تهران،ایران
2 - دانشیار دانشکده مهندسی مواد و متالوژی ،دانشکده فنی،دانشگاه تهران،تهران،ایران
کلید واژه: خواص مکانیکی, سوپرآلیاژ IN617, کارکرد طولانی مدت, تغییرات ریزساختاری,
چکیده مقاله :
چکیده
تغییرات ریزساختاری و خواص مکانیکی سوپرآلیاژ IN617 کارکرده در دمای °C750 و زمان 105000 ساعت مورد بررسی قرار گرفت. جهت بررسی از آزمایشهای متالوگرافی، SEM، TEM، استخراج فازها از زمینه، XRD و خواص مکانیکی استفاده شد. در اثر کارکرد طولانی مدت در بیشتر مرزدانهها کاربیدهای پیوسته تشکیل شده و در درون دانهها و مرزهای دوقلویی نیز کاربیدهای درشت تشکیل شده است. کسر سطحی کاربیدها از 5/0 درصد در نمونهی کارنکرده به 5/6 درصد در نمونهی کارکرده افزایش یافت. علاوه بر سه ترکیب اصلی M6C، M23C6 و Ti(C,N) در ساختار فاز γ' و به مقدار ناچیز فاز مضر دلتا شناسایی گردید. وجود فاز γ' پس از زمان کارکرد 105000 ساعت نشان دهنده پایداری خواص سوپرآلیاژ 617 است. بر اساس ابعاد ذرات γ' (4-10 نانومتر) و هم چنین مورفولوژی آنها، این فاز در مرحله انحلال قرار دارد. از 5/6 درصد کسر سطحی کاربیدها، 2/2 درصد به کاربید M6C اختصاص دارد؛ براساس بررسی ریزساختاری و نتایج آنالیز عنصری این کاربید در مرحله استحاله به کاربید M23C6 و فاز γ' قرار داشته و درصد کمی از ترکیب Ti(C,N) نیز به کاربید تبدیل شده است. وجود کاربیدهای M23C6 با ابعاد کمتر از 200 نانومتر در داخل دانهها نشاندهنده ادامه فرایند جوانهزنی کاربیدها، هر چند کم است. بیش از 90 درصد مورفولوژی کاربیدها به شکلهای شبهکروی و بیشکل بوده و باقیمانده به شکلهای صفحهای و میلهای شکل میباشند. مورفولوژی و ابعاد کاربیدهای مرزدانهای و دروندانهای نشان میدهند که آنها در مرحله ادغام و تودهایشدن قرار دارند. استحکام و سختی آلیاژ کارکرده بهتر از نمونهی کارنکرده است؛ اما به دلیل تشکیل کاربیدهای درشت مرزدانهای انرژی ضربه بیش از 75 درصد کاهش یافت. نتایج آزمایشها و ارزیابی نشان داد که سوپرآلیاژ 617 ماده مناسبی برای محدودهی دمایی 800-700 درجه و زمانهای طولانی مدت است.
Abstract
The microstructural evolutions and mechanical properties of the IN617 superalloy aged at 750°C for 105000 hours were investigated. Microstructural examinations were carried out by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Microstructural evaluations shows that continuous carbides have been formed in all grain boundaries and large carbides have been formed within the grains and twin boundaries, due to long-term aging at high temperature. The volume fraction of carbides increases from 0.5% in the as-received plate to 6.5% in the aged sample. In addition to the three main compounds of M6C, M23C6 and Ti(C,N), the γ' phase and a small amount of harmful δ phase have been identified in the aged specimen. The stability of mechanical properties at high temperature is attributed to the presence of γ' phase after 105000 hours of aging. Based on γ' particles sizes (4-10 nm) as well as their morphology, this phase is in the dissolution stage after 105000 hours. Furthermore, M6C is in the transformation stage to M23C6 carbide and γ' phase, and a small amount of Ti(C,N) has been transformed to carbide. The presence of M23C6 carbides with dimensions less than 200 nm inside the grains indicates that the nucleation process of carbides continues. More than 90% of the carbides have spherical, quasi-spherical and irregular morphologies, and the rest are plate-like and rod-shaped. The morphology and size of the carbides formed at grain boundaries and intragranular regionsindicate that they are in the process of dissolution and agglomeration. The strength and hardness of the aged alloy is better than the as-received plate; However, due to the formation of large carbides in the grain boundaries, the impact energy of the aged alloy has been reduced by more than 75% as compared to the as-received plate. The results shows that IN617 is a suitable alloy for the long-term services at temperature range of 700-800°C .
1. S. Chomette, J.-M. Gentzbittel, B. Viguier, Creep behaviour of as received, aged and cold worked INCONEL 617 at 850°C and 950°C, J. Nucl. Mater. 399 (2010) 266–274. doi:https://doi.org/10.1016/j.jnucmat.2010.01.019.
2. C. Jang, D. Lee, D. Kim, Oxidation behaviour of an Alloy 617 in very high-temperature air and helium environments, Int. J. Press. Vessel. Pip. 85 (2008) 368–377. doi:https://doi.org/10.1016/j.ijpvp.2007.11.010.
3. S.F. Di Martino, R.G. Faulkner, S.C. Hogg, S. Vujic, O. Tassa, Characterisation of microstructure and creep properties of alloy 617 for high-temperature applications, Mater. Sci. Eng. A. 619 (2014) 77–86. doi:https://doi.org/10.1016/j.msea.2014.09.046.
4. X. Xiang, Z. Yao, J. Dong, L. Sun, Dissolution behavior of intragranular M23C6 carbide in 617B Ni-base superalloy during long-term aging, J. Alloys Compd. 787 (2019) 216–228. doi:https://doi.org/10.1016/j.jallcom.2019.01.389.
5. W.-G. Kim, S.-N. Yin, G.-G. Lee, Y.-W. Kim, S.-J. Kim, Creep oxidation behaviour and creep strength prediction for Alloy 617, Int. J. Press. Vessel. Pip. 87 (2010) 289–295. doi:https://doi.org/10.1016/j.ijpvp.2010.03.008.
6. D. Tytko, P.-P. Choi, J. Klöwer, A. Kostka, G. Inden, D. Raabe, Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography, Acta Mater. 60 (2012) 1731–1740. doi:https://doi.org/10.1016/j.actamat.2011.11.020.
7. T. Lillo, J. Cole, M. Frary, S. Schlegel, Influence of Grain Boundary Character on Creep Void Formation in Alloy 617, Metall. Mater. Trans. A. 40 (2009) 2803. doi:10.1007/s11661-009-0051-7.
8. M. Speicher, F. Kauffmann, J.-H. Shim, M. Chandran, Microstructure evolution in Alloy 617 B after a long-term creep and thermal aging at 700°C, Mater. Sci. Eng. A. 711 (2018) 165–174. doi:https://doi.org/10.1016/j.msea.2017.11.004.
9. F. Abe, Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above, Engineering. 1 (2015) 211–224. doi:https://doi.org/10.15302/J-ENG-2015031.
10. M. Akbari-Garakani, M. Mehdizadeh, Effect of long-term service exposure on microstructure and mechanical properties of Alloy 617, Mater. Des. 32 (2011) 2695–2700. doi:https://doi.org/10.1016/j.matdes.2011.01.017.
11. M. Forghani, F; Mehdizadeh, M; Rayatpour, Tracing the creep lifetime degradation of IN738LC superalloy based on the primary carbide decomposition reaction and composition changes in the carbide regions, J. New Mater. 11 (2021) 81–94, (in persian). dor: 20.1001.1.22285946.1399.11.42.6.2.
12. W.L. Mankins, J.C. Hosier, T.H. Bassford, Microstructure and phase stability of INCONEL alloy 617, Metall. Mater. Trans. B. 5 (1974) 2579–2590. doi:10.1007/BF02643879.
13. R. Krishna, S. V Hainsworth, S.P.A. Gill, A. Strang, H. V Atkinson, Topologically Close-Packed μ Phase Precipitation in Creep-Exposed Inconel 617 Alloy, Metall. Mater. Trans. A. 44 (2013) 1419–1429. doi:10.1007/s11661-012-1491-z.
14. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, V.K. Vasudevan, Microstructure of Long-Term Aged IN617 Ni-Base Superalloy, Metall. Mater. Trans. A. 39 (2008) 2569–2585. doi:10.1007/s11661-008-9618-y.
15. M. Cabibbo, E. Gariboldi, S. Spigarelli, D. Ripamonti, Creep behavior of INCOLOY alloy 617, J. Mater. Sci. 43 (2008) 2912–2921. doi:10.1007/s10853-007-1803-7.
16. S. Kihara, J.B. Newkirk, A. Ohtomo, Y. Saiga, Morphological changes of carbides during creep and their effects on the creep properties of inconel 617 at 1000 °C, Metall. Trans. A. 11 (1980) 1019–1031. doi:10.1007/BF02654716.
17. M. Kewther Ali, M.S.J. Hashmi, B.S. Yilbas, Fatigue properties of the refurbished INCO-617 alloy, J. Mater. Process. Technol. 118 (2001) 45–49. doi:https://doi.org/10.1016/S0924-0136(01)01035-4.
18. R. Krishna, S. V Hainsworth, H. V Atkinson, A. Strang, Microstructural analysis of creep exposed IN617 alloy, Mater. Sci. Technol. 26 (2010) 797–802. doi:10.1179/026708309X12584564052094.
19. A. Narayan Singh, A. Moitra, P. Bhaskar, G. Sasikala, A. Dasgupta, A.K. Bhaduri, Effect of thermal aging on microstructure, hardness, tensile and impact properties of Alloy 617, Mater. Sci. Eng. A. 710 (2018) 47–56. doi:https://doi.org/10.1016/j.msea.2017.10.078.
20. E. Gariboldi, M. Cabibbo, S. Spigarelli, D. Ripamonti, Investigation on precipitation phenomena of Ni–22Cr–12Co–9Mo alloy aged and crept at high temperature, Int. J. Press. Vessel. Pip. 85 (2008) 63–71. doi:https://doi.org/10.1016/j.ijpvp.2007.06.014.
21. G. Yan, Z. Rongcan, T. Liying, H. Shufang, W. Bohan, Microstructural Stability of Alloy 617 Mod. During Thermal Aging, ASME 2014 Symp. Elev. Temp. Appl. Mater. Foss. Nucl. Petrochemical Ind. (2014) 15–19. doi:10.1115/ETAM2014-1001.
22. Y. Guo, B. Wang, S. Hou, Aging precipitation behavior and mechanical properties of Inconel 617 superalloy, Acta Metall. Sin. (English Lett. 26 (2013) 307–312. doi:10.1007/s40195-012-0249-3.
J.K. Wright, Progress Report on Alloy 617 Time Dependent Allowables, (n.d.). doi:10.2172/1236836.
_||_