سنتز و بررسی خواص نانوذرات و نانوکلوئید سیلیکا در محیط قلیایی و اسیدی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینالهام کتوئی زاده 1 , مریم رسولی 2 , سید مجتبی زبرجد 3 *
1 - دستیار پژوهشی دانشگاه شیراز
2 - دانش آموخته مهندسی مواد دانشگاه شیراز
3 - دانشگاه شیراز
کلید واژه: نانوذرات, سنتز سیلیکا, نانوکلوئید, قلیایی, اسیدی,
چکیده مقاله :
نانو سیلیکا به عنوان یکی از پرکاربردترین نانو مواد در صنایع مختلف شناخته شده است. در این پژوهش، با استفاده از پیشماده سدیم سیلیکات نانوذرات و نانوکلوئید سیلیکا به ترتیب در محیط قلیایی و اسیدی سنتز میشوند. در ادامه تاثیر پارامترهای سنتز بر مورفولوژی ذرات حاصل در محیط قلیایی و خواص رئولوژیکی نانوکلوئید حاصل در محیط اسیدی مورد بحث و بررسی قرار میگیرند. مشاهدات میکروسکوپی نشان داد که با تغییر در نسبت آمونیاک به اتانول و غلظت محلول سدیم سیلیکات میتوان اندازه و مورفولوژی ذرات را تغییر داد. نتایج نشان داد که با افزایش نسبت اتانول به آمونیاک اندازه ذرات بزرگتر میشود و در مقابل، مورفولوژی ذرات با افزایش غلظت سدیم سیلیکات به صورت نامنظم درآمده و همچنین اندازه ذرات افزایش مییابد. در واقع در شرایط (1: EtOH/NH3 و 07/0 : Na2SiO3/H2O) میتوان به محلول کلوئیدی پایدار نانوذرات با اندازه 65 نانومتر دست یافت. همچنین زمان ژلشدن (tgel) سیلیکاژل حاصل در شرایط اسیدی توسط آزمون روبش زمان در فرکانسهای ثابت (Hz 5/0، 3/0 و 1/0) مورد بررسی قرار گرفت. با استفاده از روابط بررسی نقطه ژلشدن، مقادیر توان واهلش (Δ) برابر با 22/0 و بعد فراکتال(df) برابر با 39/2 اندازهگیری شدند که نشان میدهند، تعادل غیراستوکیومتری بر سیستم حاضر حاکم است. همچنین توسط طیفسنجی تبدیل فوریه مادون قرمز آنالیز شیمیایی شناسایی ترکیب شیمیایی سیلیکا انجام شد و طیفسنجی فلورسانس پرتو ایکس نشان داد که شستشوی نانوذرات سیلیس سبب افزایش خلوص از ۱۸/۸۴٪ به 33/87٪ میگردد.
Nanosilica in known as one of the most widely used components in various industries. In the current study, silica nanoparticle/colloid were synthesized in acidic and alkaline media using sodium silicate as a precursor. The effect of synthesis parameters on the morphology of the obtained nanoparticles and the rheological properties of silica colloid were studied. Microscopic observations revealed that size and morphology of the obtained silica nanoparticles can be changed by varying the ammonia to ethanol ratio, as well as the concentration of sodium silicate solution. The results revealed that the particles size is raised by increasing the ethanol to ammonia ratio and increasing the sodium silicate concentration leads to irregular and larger particles. the particles In fact, at (EtOH/NH3 :1 and Na2SiO3/H2O:0.07) a stable colloidal silica containing silica nanoparticles with average diameter of 65nm could be achieved. Additionaly, gelation time (tgel) of nanocolloid was measured using time sweep at constant frequencies of 0.1, 0.3 and 0.5 Hz. Applying the gelation point relations, the relaxation power (Δ) and fractal dimension (df) were measured as 0.22 and 2.39, respectively, indicating that the current system follows a non-stoichiometric equilibrium. Furthermore, the Fourier transform infrared spectroscopy (FTIR) test confirmed the formation of silica chemical bonding and the purity of the washed silica particles was increased from 84.18% to 87.33%, measured via X-ray fluorescence spectroscopy (XRF)
1. Qhobosheane, M., Qhobosheane, M., Santra, S., Zhang, P., & Tan, W., Biochemically functionalized silica nanoparticles. Analyst, 2001. 126(8): p. 1274-1278.
2. Rao, K.S., El-Hami, K., Kodaki, T., Matsushige, K., & Makino, K., A novel method for synthesis of silica nanoparticles. Journal of colloid and interface science, 2005. 289(1): p. 125-131.
3. Tadros, T.F., Basic Principles of Formulation Types. Vol. 2. 2018: Walter de Gruyter GmbH & Co KG.
4. Ilyin, S. O., Arinina, M. P., Malkin, A. Y., & Kulichikhin, V. G., Sol–gel transition and rheological properties of silica nanoparticle dispersions. Colloid Journal, 2016. 78(5): p. 608-615.
5. Singh, L. P., Bhattacharyya, S. K., Kumar, R., Mishra, G., Sharma, U., Singh, G., & Ahalawat, S., Sol-Gel processing of silica nanoparticles and their applications. Advances in colloid and interface science, 2014. 214: p. 17-37.
6. Rahman, I.A. and V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. Journal of Nanomaterials, 2012. 2012.
7. Dabbaghian, M., Babalou, A. A., Hadi, P., & Jannatdoust, E., A parametric study of the synthesis of silica nanoparticles via sol-gel precipitation method. International Journal of Nanoscience and Nanotechnology, 2010. 6(2): p. 104-113.
8. Weichold, O., B. Tigges, M. Bertmer, & M. Möller, A comparative study on the dispersion stability of aminofunctionalised silica nanoparticles made from sodium silicate. Journal of colloid and interface science, 2008. 324(1-2): p. 105-109.
9. Zulfiqar, U., T. Subhani, and S.W. Husain, Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. Journal of Sol-Gel Science and Technology, 2016. 77(3): p. 753-758.
۱۰.م. محمدی، ح. خرسند، "سنتز نانوسیلیکا به روش رسوبگذاری با کاربرد عوامل فعالکننده سطحی"، مجله مواد نوین، جلد ۱ ،شماره ۳ ،ص ۷۴-۶۳ ، بهار ۱۳۹۰.
11. Musić, S., N. Filipović-Vinceković, and L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Brazilian journal of chemical engineering, 2011. 28(1): p. 89-94.
12. Sarawade, P. B., J.K. Kim, A. Hilonga, & H.T. Kim, Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sciences, 2010. 12(5): p. 911-918.
13. Iler, K.R., The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica, 1979.
14. Jafarzadeh, M., I. Rahman, and C. Sipaut, Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques. Journal of Sol-Gel Science and Technology, 2009. 50(3): p. 328-336.
15. Acosta, E.J., S.O. Gonzalez, and E.E. Simanek, Synthesis, characterization, and application of melamine‐based dendrimers supported on silica gel. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(1): p. 168-177.
16. Milea, C., C. Bogatu, and A. Duta, The influence of parameters in silica sol-gel process. Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, 2011. 4(1): p. 59.
17. Baumer, R.E. and M.J. Demkowicz, Glass transition by gelation in a phase separating binary alloy. Physical review letters, 2013. 110(14): p. 145502.
18. Perry, C.C., Silicification: the processes by which organisms capture and mineralize silica. Reviews in mineralogy and geochemistry, 2003. 54(1): p. 291-327.
19. Dörr, D., U. Kuhn, and V. Altstädt, Rheological Study of Gelation and Crosslinking in Chemical Modified Polyamide 12 Using a Multiwave Technique. Polymers, 2020. 12(4): p. 855.
20. Isobe H, Utsumi S, Yamamoto K, Kanoh H, Kaneko K. Micropore to macropore structure-designed silicas with regulated condensation of silicic acid nanoparticles. Langmuir. 2005 Aug 16;21(17):8042-7.
21. Shi X, Xu S, Lin J, Feng S, Wang J. Synthesis of SiO2-polyacrylic acid hybrid hydrogel with high mechanical properties and salt tolerance using sodium silicate precursor through sol–gel process. Materials Letters. 2009 Feb 28;63(5):527-9.
22. Okabe A, Fukushima T, Ariga K, Niki M, Aida T. Tetrafluoroborate Salts as Site-Selective Promoters for Sol− Gel Synthesis of Mesoporous Silica. Journal of the American Chemical Society. 2004 Jul 28;126(29):9013-6.
23. Wang, X. D., Shen, Z. X., Sang, T., Cheng, X. B., Li, M. F., Chen, L. Y., & Wang, Z. S., Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. Journal of colloid and interface science, 2010. 341(1): p. 23-29.
24. Duran, A., Serna, C., Fornes, V., & Navarro, J. F., Structural considerations about SiO2 glasses prepared by sol-gel. Journal of Non-Crystalline Solids, 1986. 82(1-3): p. 69-77.
25. Godoi, R. H. M., Fernandes, L., Jafelicci Jr, M., Marques, R. C., Varanda, L. C., & Davolos, M. R., Investigation of the systems silica and silica containing chromium in alcohol medium. Journal of non-crystalline solids, 1999. 247(1-3): p. 141-145.
26. Rahman, I., Vejayakumaran, P., Sipaut, C. S., Ismail, J., Bakar, M. A., Adnan, R., & Chee, C. K., An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 294(1-3): p. 102-110.
27. Tognonvi, M.T., Massiot, D., Lecomte, A., Rossignol, S., & Bonnet, J. P., Identification of solvated species present in concentrated and dilute sodium silicate solutions by combined 29Si NMR and SAXS studies. Journal of colloid and interface science, 2010. 352(2): p. 309-315.
28. Zulfiqar, U., T. Subhani, and S.W. Husain, Towards tunable size of silica particles from rice husk. Journal of Non-Crystalline Solids, 2015. 429: p. 61-69.
29. Wang, J., Sugawara-Narutaki, A., Fukao, M., Yokoi, T., Shimojima, A., & Okubo, T., Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS applied materials & interfaces, 2011. 3(5): p. 1538-1544.
30. Ponton, A., S. Warlus, and P. Griesmar, Rheological study of the sol–gel transition in silica alkoxides. Journal of colloid and interface science, 2002. 249(1): p. 209-216.
31. Tung, C.Y.M. and P.J. Dynes, Relationship between viscoelastic properties and gelation in thermosetting systems. Journal of Applied Polymer Science, 1982. 27(2): p. 569-574.
32. Winter, H.H., Can the gel point of a cross‐linking polymer be detected by the G′–G ″crossover? Polymer Engineering & Science, 1987. 27: p. 1698-1702.
33. Du, C. and R.J. Hill, Linear viscoelasticity of weakly cross-linked hydrogels. Journal of Rheology, 2019. 63(1): p. 109-124.
34. Mason, T.G., Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheologica acta, 2000. 39(4): p. 371-378.
35. Nöbel, S., Hahn, C., Hitzmann, B., & Hinrichs, J., Rheological properties of microgel suspensions: Viscoelastic modelling of microstructural elements from casein micelles to fermented dairy products. International Dairy Journal, 2014. 39(1): p. 157-166.
36. Abdulrazzaq, O.A., Saini, V., Bourdo, S., Dervishi, E., & Biris, A. S., Particulate Science and Technology: An International Journal. Volume, 2010. 31: p. 427-442.
37. Lattuada, M., H. Wu, and M. Morbidelli, A simple model for the structure of fractal aggregates. Journal of Colloid and Interface Science, 2003. 268(1): p. 106-120.
38. Ishida, H. and T. Agag, Handbook of benzoxazine resins. 2011: Elsevier.
39. Nair, B.N., T. Okubo, and S.-i. Nakao, Structure and separation properties of silica membranes. Membrane, 2000. 25(2): p. 73-85.
40. Abedali, A.H., Predicting complex shear modulus using artificial neural networks. Journal of Civil Engineering and Construction Technology, 2015. 6(3): p. 15-26.
41. Park, S.J., M.K. Seo, and J.R. Lee, Relationship between viscoelastic properties and gelation in the epoxy/phenol‐novolac blend system with N‐benzylpyrazinium salt as a latent thermal catalyst. Journal of applied polymer science, 2001. 79(12): p. 2299-2308.
42. Kim, S.-Y., D.-G. Choi, and S.-M. Yang, Rheological analysis of the gelation behavior of tetraethylorthosilane/vinyltriethoxysilane hybrid solutions. Korean Journal of Chemical Engineering, 2002. 19(1): p. 190-196.
43. Quang, D.V., Kim, J. K., Park, J. K., Park, S. H., Elineema, G., Sarawade, P. B., & Kim, H. T., Effect of the gelation on the properties of precipitated silica powder produced by acidizing sodium silicate solution at the pilot scale. Chemical engineering journal, 2012. 209: p. 531-536.
_||_