بررسی تاثیر افرودنیهای پلی وینیل الکل، نانو سیلیکا کلوییدی و نانو ذرات هیدروکسی آپاتیت بر نانوکامپوزیت کلسیم سیلیکاتی و تعیین مقدار بهینه آنها با استفاده از مدل آماری تاگوچی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینخدیجه یوسفی 1 * , حبیب دانش منش 2
1 - دانشگاه شیراز
2 - استاد بخش مهندسی مواد دانشگاه شیراز
کلید واژه: بهینه سازی, نانو کامپوزیت کلسیم سیلیکاتی, نانو ذرات هیدروکسی آپاتیت, نانو سل سیلیکا, پلی وینیل الکل,
چکیده مقاله :
Nano Fast Cement (NFC) یک سیمان با زمان گیرش بسیار پایین برای ترمیم کانال ریشه دندان به عنوان جایگزینی برای Mineral Trioxide Agregate(MTA) است. ضعف این ماده ترمیم کننده جدید دندان، کارپذیری یا چسبندگی ضعیف و مقاومت فشاری و خمشی پایین است. برای رفع این مشکلات، در این پژوهش سعی شده با اضافه کردن افزودنی هایی از جمله پلی وینیل الکل (PVA)، نانو سل سلیکا و نانو ذرات هیدروکسی آپاتیت خواص فیزیکی، مکانیکی، زیست فعالی و زیست سازگاری NFC را بهبود دهیم. بنابراین هدف از این تحقیق، تولید نوع جدیدی از نانوکامپوزیت کلسیم سیلیکاتی، با زمان گیرش پایین، کارپذیری مناسب و استحکام فشاری و خمشی بالا است این نانو کامپوزیت با مخلوط کردن پودر NFC، نانو ذرات هیدروکسی آپاتیت، نانو سل سیلیکا و پلی وینیل الکل ساخته شد و اثر سه افزودنی بر خواص فیزیکی و مکانیکی NFC بررسی شد، با استفاده از روش طراحی تاگوچی، تاثیر سطوح مختلف مواد افزودنی و مقدار بهینه درصد هر افزودنی برای داشتن نانو کامپوزیتی با استحکام فشاری و خشمی بالا، زمان گیرش پایین و کارپذیری یا چسبندگی مناسب تعیین شد و با توجه به نتایج طراحی تاگوچی موثرترین فاکتور بر خواص مکانیکی نانو کامپوزیت تولید شده پلی وینیل الکل است که سطح سه(6درصد) آن بیشترین مقدار سیگنال به نویز را دارد و نشان دهنده این است که سطح بهینه برای این فاکتور، سطح سه است. همچنین برای فاکتور نانوذرات هیدروکسی آپاتیت مقدار سیگنال به نویز تمامی سطوح تقریبا نزدیک به یکدیگر است که نشان دهنده این است که این فاکتور تاثیر زیادی بر خواص مکانیکی ندارد و با توجه به نتایج آزمون زمان گیرش موثرترین فاکتور بر زمان گیرش NFC، نانو سلیکا کلوییدی است که سطح بهینه برای این فاکتور، سطح 2(5/0درصد وزنی نانو سیلیکا) است. به این ترتیب درصد بهینه برای تولید نانو کامپوزیتی با بالاترین استحکام و کمترین زمان گیرش و کارپذیری مناسب، 6 درصد پلی وینیل الکل است و نانو ذرات هیدروکسی آپاتیت تاثیر قابل توجهی بر خواص فیزیکی و مکانیکی NFC ندارد.
The purpose of this work is to develop a new type of calcium silicate nanocomposite, with low setting time, good workability and high strength. This new nanocomposite is prepared by mixing Nano Fast Cement, Nano Hydroxyapatite, polyvinyl alcohol and colloidal nano silica. The effect of three additives (hydroxyapatite nanoparticles, colloidal nano silica and polyvinyl alcohol solution) on its physical and mechanical properties was investigated. Using Taguchi design method, the effect of different levels of additives and optimum percentages of each additive on having nano composite with high compressive strength, low setting time and good workability were determined. According to the results, the most effective factor on the mechanical properties of nanocomposite (compressive strength, flexural strength and flexibility) is polyvinyl alcohol, that level of three (6%) has the highest signal to noise ratio, indicating that the optimal level for this factor is level three. Also, factor A, which represents the hydroxyapatite nanoparticles, is the signal-to-noise value of all surfaces almost close to each other, indicating that this factor does not have much effect on the mechanical properties. And according to the test results, the most effective factor on the setting time is percentage of hydroxyapatite nanoparticles. The optimal level for this factor is level one (zero for hydroxyapatite). Thus, the optimum percentages for nanocomposite production with the highest strength and the lowest setting time and good workability are 6% polyvinyl alcohol, 0% hydroxyapatite and 0.5% nanosilica.
[1] H. W. Roberts, J. M. Toth, D. W. Berzins, and D. G. Charlton, “Mineral trioxide aggregate material use in endodontic treatment: A review of the literature,” Dent. Mater., vol. 24, no. 2, pp. 149–164, 2008.
[2] C. Prati and M. G. Gandolfi, “Calcium silicate bioactive cements: Biological perspectives and clinical applications,” Dent. Mater., vol. 31, no. 4, pp. 351–370, 2015.
[3] C. Prati and M. G. Gandolfi, “Calcium silicate bioactive cements: Biological perspectives and clinical applications,” Dent. Mater., vol. 31, no. 4, pp. 351–370, 2015.
[4] M. Parirokh and M. Torabinejad, “Mineral Trioxide Aggregate: A Comprehensive Literature Review-Part III: Clinical Applications, Drawbacks, and Mechanism of Action,” J. Endod., vol. 36, no. 3, pp. 400–413, 2010.
[5] M. Yamamoto, H. Wanibe, K. Nakata, S. Tsuruta, T. Kawai, and H. Nakamura, “Newly developed mineral trioxide aggregate containing polyvinyl alcohol,” Dent. Mater. J., vol. 31, no. 6, pp. 1014–1020, 2012.
[6] K. S. Coomaraswamy, “SYSTEMATIC ANALYSIS OF MINERAL TRIOXIDE AGGREGATE USING A MODEL CEMENT,” no. July, 2016.
[7] Ö. Malkondu, M. K. Kazandaǧ, and E. Kazazoǧlu, “A review on biodentine, a contemporary dentine replacement and repair material,” Biomed Res. Int., vol. 2014, 2014.
[8] M. Akbari, S. M. Zebarjad, B. Nategh, and A. Rouhani, “Effect of nano silica on setting time and physical properties of mineral trioxide aggregate,” J. Endod., vol. 39, no. 11, pp. 1448–1451, 2013.
[9] M. R. Sanaee et al., “Nanomedicine and Nanotechnology in Healthcare Effect of colloidal nano-silica on setting time, radiopacity and physical properties of a nano cement based compound for endodontic applications,” J Nanomed Nanotechnol, vol. 8, no. 5, p. 5, 2017.
[10] M. R. Sanaee et al., “The influence of particle size and multi-walled carbon nanotube on physical properties of Mineral Trioxide Aggregate,” Mater. Res. Express, vol. 6, Mar. 2019.
[11] S. Guzman-Puyol et al., “Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol-cellulose composites,” Chem. Eng. J., vol. 277, pp. 242–251, 2015.
[12] C. C. Thong, D. C. L. Teo, and C. K. Ng, “Application of polyvinyl alcohol ( PVA ) in cement-based composite materials : A review of its engineering properties and microstructure behavior,” vol. 107, pp. 172–180, 2016.
[13] A. M. El -Dakroury, “Mechanical and chemical properties of polyvinyl alcohol modified cement mortar with silica fume used as matrix including radioactive waste,” Arab J. Nucl. Sci. Appl., vol. 47, no. 2, pp. 44–53, 2014.
[14] A. Szcześ, L. Hołysz, and E. Chibowski, “Synthesis of hydroxyapatite for biomedical applications,” Adv. Colloid Interface Sci., vol. 249, no. April, pp. 321–330, 2017.
[15] G. Rajabzadeh, S. Salehi, A. Nemati, R. Tavakoli, and M. Solati Hashjin, “Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling,” J. Mech. Behav. Biomed. Mater., vol. 29, pp. 317–327, 2014.
[16] Y. T. Jou, W. T. Lin, W. C. Lee, and T. M. Yeh, “Integrating the taguchi method and response surface methodology for process parameter optimization of the injection molding,” Appl. Math. Inf. Sci., vol. 8, no. 3, pp. 1277–1285, 2014.
[17] ج. وحدتی خاکی، خ. یوسفی و م. زبرجد، " بهینه سازی -شرایط آزمایش با روش آماری تاگوچی برای ساخت نانوذرات هیدروکسی آپاتیت به روش سل ژل،" نشریه مواد -نوین، دوره 4 شماره 15 ، ص 1 - 10 ، اردیبهشت .1393
[18] ر. معمازاده، س. جوادپور و . پناهی، " بهینه سازی -عوامل موثر بر اندازه نانو ذرات اکسید قلع به روش تاگوچی،" نشریه مواد نوین، دوره 3 شماره 7 ، ص 11 -20 ، اسفند 1391 .
[19] س. پایدار، م. شریعت و س. جوادپور، " بهینه سازی -پارامترهای فریند ریخته گری نواری زیرکونیا تثبیت شده با ایتریا به وسیله طراحی تاگوچی به عنوان الکترولیت پیل سوختی اکسید جامد،" نشریه مواد نوین، دوره 7شماره 4، ص56-47. اسفند 96 .
[20] Y. KHADIJEH, Z. S. MOJTABA, and V. K. JALIL, “COMPARISON OF POLY-ETHYLENE GLYCOL EFFECT ON HYDROXYAPATITE MORPHOLOGY PRODUCED INTO DIFFERENT METHOD: SOL-GEL AND PRECIPITATION,” vol. 9, no. 132. ADVANCED PROCESSES IN MATERIALS, pp. 55–61, 01-Jan-2015.
[21] Y. S. Noh et al., “Mechanical properties and microstructure analysis of mineral trioxide aggregate mixed with hydrophilic synthetic polymer,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 103, no. 4, pp. 777–782, 2015.
[22] H. Matsuyama and J. F. Young, “Intercalation of Polymers in Calcium Silicate Hydrate: A New Synthetic Approach to Biocomposites?,” Chem. Mater., vol. 11, no. 1, pp. 16–19, 1999.
[23] P. Aggarwal, R. P. Singh, and Y. Aggarwal, “Use of nano-silica in cement based materials — A review,” Cogent Eng., vol. 33, no. 1, 2015.
[24] J. Björnström, A. Martinelli, A. Matic, L. Börjesson, and I. Panas, “Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement,” Chem. Phys. Lett., vol. 392, no. 1–3, pp. 242–248, 2004.
[25] N. B. Singh and S. Rai, “Effect of polyvinyl alcohol on the hydration of cement with rice husk ash,” Cem. Concr. Res., vol. 31, no. 2, pp. 239–243, 2001.
[26] L. Wang, D. Zheng, S. Zhang, H. Cui, and D. Li, “Effect of nano-SiO2 on the hydration and microstructure of Portland cement,” Nanomaterials, vol. 6, no. 12, 2016.
[27] P. Jittabut, S. Pinitsoontorn, P. Thongbai, V. Amornkitbamrung, and P. Chindaprasirt, “Effect of nano-silica addition on the mechanical properties and thermal conductivity of cement composites,” Chiang Mai J. Sci., vol. 43, no. 5, pp. 1160–1170, 2016.
[28] M. Berra, F. Carassiti, T. Mangialardi, A. E. Paolini, and M. Sebastiani, “Effects of nanosilica addition on workability and compressive strength of Portland cement pastes,” Constr. Build. Mater., vol. 35, pp. 666–675, 2012.
_||_