کاربرد ترکیبی از اکستروژن و پرس در کانالهای زاویه دار هم مقطع در فرآوری مواد فلزی ریز دانه و نانوساختار
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوین
1 - دانشگاه صنعتی سهند
کلید واژه: مواد نانوساختار, اکستروژن, پرس در کانالهای زاویه دار هم مقطع, تحلیل المان محدود,
چکیده مقاله :
تغییر شکل پلاستیک شدید یکی از روشهای موثر در کاهش اندازه دانه های مواد فلزی و دست یابی به مواد فوق ریزدانه و نانوساختار می باشد. در مقاله حاضر تغییر شکل پلاستیک شدید از طریق ترکیبی از اکستروژن و پرس در کانالهای زاویه دار هم مقطع بر روی مواد مختلف مانند مس خالص تجاری، آلیاژ آلومینیم 7075، فولاد میکروآلیاژی و فولاد ساده کربنی فریتی به طور موفقیت آمیزی اعمال شد. با بررسی ریزساختار حاصل از تغییر شکل در دمای محیط از طریق میکروسکوپ نوری و پراش پرتو ایکس قابلیت این روش در فرآوری مواد نانوساختار به اثبات رسید. اندازه متوسط دانه ها در آلیاژ آلومینیم 7075 در حدود 160 نانومتر و فولاد ساده کربنی در حدود 125 نانومتر محاسبه شد. همچنین تغییر شکل از طریق این روش بر روی آلیاژ آلومینیم 7075 و فولاد ساده کربنی در دمای بالا اعمال شد. در مورد آلیاژ آلومینیم 7075 از طریق وقوع تبلور مجدد دینامیکی اندازه متوسط دانه ها تا 6 میکرومتر کاهش پیدا کرد. علاوه بر این تغییر شکل فولاد ساده کرینی با دمای پیشگرم 930 درجه سانتیگراد نشان داد که اندازه دانه ها در این فولاد را می توان از طریق وقوع استحاله تحت کرنش دینامیکی آستنیت به فریت تا 3 میکرومتر کاهش داد. مشخصه های تغییر شکل فرآیند تلفیقی اکستروژن-پرس در کانالهای زاویه دار هم مقطع از طریق شبیه سازی المان محدود مورد بررسی قرار گرفت. با استفاده از نتایج تحلیل المان محدود نحوه توزیع کرنش در نمونه های تغییر شکل یافته مطالعه شد.
Severe plastic deformation is one of the most effective methods of grain refinement which can be used for processing of ultra fine grained and nanostructured metallic materials. In the present study the combination of extrusion and equal channel angular pressing is imployed for severe plastic deformation of materials. Using this method, a severe plastic deformation was imposed succesfully on pure copper, Al7075 alloy, plain low carbon and microalloyed steels. The cabability of the proposed methode in production of nanostructured materials was approved by anallyzing the obtained microstructures of processed samples with opticaal microscopy and X-ray diffraction spectroscopy. The mean crystallite size of processed Al7075 alloy and plain low carbon steel was meassured to be 160 and 125 nm respectively. Also, the plastic deformation was applied on these materials at high temperatures. In the case of Al7075 alloy the microstructure was refined to the mean grain size of 6 µm through the occurance of dynamic recrystallization during deformation at the preheating temperature of 250 ̊C. Also, the plastic deformation of plain carbon steel at the preheating temperature of 930 ̊C demonstrated that the microstructure can be refined to 3 µm through dynamic strain induced transformation of austenite to ferrite. Moreover, the plastic deformation characteristics of combined extrusion-equal channel angular pressing was studied using finite element simultion. The formation of superficial cracks on the topside of Al7075 sample was also predicted using the FEM analysis.
1- A. Azushima, R. Kopp, A. Korhonen, D. Yang, F. Micari, G. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, "Severe plastic deformation (SPD) processes for metals", CIRP Annals, Vol. 57, pp. 716-735, 2008.
2- Y. Estrin, A. Vinogradov, "Extreme grain refinement by severe plastic deformation: A wealth of challenging science", Acta materialia, Vol. 61, pp. 782-817, 2013.
3- Y. Zhu, J. Huang, J. Gubicza, T. Ungár, Y. Wang, E. Ma, R. Valiev, "Nanostructures in Ti processed by severe plastic deformation", Journal of Materials Research, Vol. 18, pp. 1908-1917, 2003.
4- Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, "Principle of equal-channel angular pressing for the processing of ultra-fine grained materials", Scripta materialia, Vol. 35, pp. 143-146, 1996.
-5 ع. یزدانی، "تولید کامپوزیت های نانوساختار آلومینیوم- کاربید بور به روش اتصال تجمعی نورد" نشریه مواد نوین، جلد 2، شماره 3، ص 23-32، بهار 1390.
6- A.P. Zhilyaev, T.G. Langdon, "Using high-pressure torsion for metal processing: Fundamentals and applications", Progress in Materials Science, Vol. 53, pp. 893-979, 2008.
7- D.H. Shin, J.-J. Park, Y.-S. Kim, K.-T. Park, "Constrained groove pressing and its application to grain refinement of aluminum", Materials Science and Engineering: A, Vol. 328, pp. 98-103, 2002.
8- Y. Nakao, H. Miura, "Nano-grain evolution in austenitic stainless steel during multi-directional forging", Materials Science and Engineering: A, Vol. 528, pp. 1310-1317, 2011.
9- Y. Chen, Q. Wang, H. Roven, M. Karlsen, Y. Yu, M. Liu, J. Hjelen, "Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression", Journal of Alloys and Compounds, Vol. 462, pp. 192-200, 2008 .
10- N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, "Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC)", Materials Science and Engineering: A, Vol. 528, pp. 7537-7540, 2011.
11- L. Tóth, M. Arzaghi, J. Fundenberger, B. Beausir, O. Bouaziz, R. Arruffat-Massion, "Severe plastic deformation of metals by high-pressure tube twisting", Scripta Materialia, Vol. 60, pp. 175-177, 2009.
12- L. Zaharia, R. Comaneci, R. Chelariu, D. Luca, "A new severe plastic deformation method by repetitive extrusion and upsetting", Materials Science and Engineering: A, Vol. 595, pp. 135-142, 2014.
13- D. Zangiabadi, M. Kazeminezhad, "Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP)",Materials Science and Engineering: A, Vol. 528, pp. 5066-5072, 2011.
14- V. Segal, "Equal channel angular extrusion: from macromechanics to structure formation", Materials Science and Engineering: A, Vol. 271, pp. 322-333, 1999.
15- P.B. Berbon, M. Furukawa, Z Horita, M. Nemoto, T.G. Langdon, "Influence of pressing speed on microstructural development in equal-channel angular pressing", Metallurgical and Materials Transactions A, Vol. 30, pp. 1989-1997.
16- S.A.A. Akbari Mousavi, A.R. Shahab, M. Mastoori, "Computational study of Ti–6Al–4V flow behaviors during the twist extrusion process", Materials and Design, Vol. 29, pp. 1316-1329, 2008.
17- M. Berta, D. Orlov, P.B. Prangnell, "Grain refinement response during twist extrusion of an Al-0.13% Mg alloy", International Journal of Materials Research, Vol. 98, pp. 200-204, 2007.
18- D. Orlov, Y. Beygelzimer, S. Synkov, V. Varykhin, N. Tsuji, Z. Horita, "Microstructure Evolution in Pure Al Processed with Twist Extrusion", Materials Transactions, Vol. 50, pp. 96-100, 2009.
19- J. Jouaki, M. Safari, S.M. Alhosseini, "Hollow Twist Extrusion: Introduction, Strain Distribution, and Process Parameters Investigation", Metals and Materials International, 2019, Published Online. https://doi.org/10.1007/s12540-019-00301-7.
20- V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, "Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling", Materials Science and Engineering: A, Vol. 343, pp. 43-50, 2003.
21- S.M. Alavizadeh, K. Abrinia, A. Parvizi, "Twisted Multi Channel Angular Pressing (TMCAP) as a Novel Severe Plastic Deformation Method", Metals and Materials International, 2019, Published Online. https://doi.org/10.1007/s12540-019-00319-x.
22- م. شبان، ا. وجد، ب. مصدق، "بررسی ریزساختار و خواص مکانیکی فولاد کربنی فرآوری شده به روش دو مرحله ای اکستروژن و پرس در کانالهای همسان متقاطع (Extrusion-ECAP)" نشریه مواد نوین، جلد 6، شماره 2، ص 55-64، زمستان 1394.
23- P.N. Kalu, D.R. Waryoba, "Texture and Microstructure Variation in Severe Plastic Deformed OFHC Cu Wires", Materials Science Forum, Vol. 550, pp. 509-514, 2007.
24- A. Sarkar, A. Bhowmik, S. Suwas, "Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis", Applied Physics A, Vol. 94, pp. 943-948, 2009.
25- M.M. Garabagh, S.H. Nedjad, H. Shirazi, M.I. Mobarekeh, M.N. Ahmadabadi, "X-ray diffraction peak profile analysis aiming at better understanding of the deformation process and deformed structure of a martensitic steel", Thin Solid Films, Vol. 516, pp. 8117-8124, 2008.
26- T. Ungár, Á. RRévész, A. Borbély, "Dislocations and Grain Size in Electrodeposited Nanocrystalline Ni Determined by the Modified Williamson-Hall and Warren-Averbach Procedures", Journal of applied crystallography, Vol. 31, pp. 554-558, 1998.
27- I. Dragomir, M. Gheorghe, N. Thadhani, R. Snyder, "X-ray peak profile analysis of crystallite size distribution and dislocation type and density evolution in nano-structured Cu obtained by deformation at liquid nitrogen temperature", Materials Science and Engineering: A, Vol. 402, pp. 158-162, 2005.
28- T. Ungár, I. Dragomir, Á. Révész and A. Borbély, " The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice", Journal of Applied Crystallography, Vol. 32, pp. 992-1002, 1999.
29- H. Beladi, G. Kelly, A. Shokouhi, P. Hodgson, "The evolution of ultrafine ferrite formation through dynamic strain-induced transformation", Materials Science and Engineering: A, Vol. 371, pp. 343-352 , 2004.
30- R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, "The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys", Acta Materialia, Vol. 55, pp. 4769-4779, 2007.
_||_