تولید چدن نشکن آستمپر فریتی-آسفریتی با قابلیت ماشینکاری بالا از طریق انتخاب زمان آستنیته جزئی مناسب
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینعلی محمد رشیدی 1 * , حیدر رمضانی 2
1 - دانشیار، دانشکده فنی مهندسی، دانشگاه رازی، کرمانشاه، ایران
2 - کارشناس، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران،ایران
کلید واژه: چدن نشکن آستمپر, زمان آستنیته جزئی همدما, زمینه دوفازی, قابلیت ماشینکاری, نیروی برش,
چکیده مقاله :
چدن نشکن آستمپر (ADI) ماده مهندسی شناخته شدهای با پتانسیل جایگزینی فولاد آهنگری است. اما کم بودن قابلیت ماشینکاری آن موجب شده از سوی برخی سازندگان مورد استقبال قرار نگیرد. بنابراین اصلاح فرایند تولید آن ضروری است تا با کنترل پارامترهای عملیات حرارتی قابلیت ماشینکاری چدن ADI بهبود یابد. این تحقیق با هدف مشخص نمودن اثر زمان آستنیته جزئی همدما بر نیروی تراشکاری و تعیین زمان بهینه انجام شد. نمونههای با زمینه فریتی(FDI) در دمای oC 900 به مدت min 5 تا min 60 آستنیته و سپس در نمک مذاب با دمای 370 oC به مدت min 60 آستمپرشدند تا زمینه دوفازی(DMS) با مقادیر مختلف فاز آسفریت ایجاد شود. مقدار فازها با آنالیز تصویری و سختی آنها به روش برینل تعیین گردید. مولفههای نیروی برش با دستگاه دینامومترکیستلر در چند نرخهای پیشروی مختلف اندازهگیری شد. طبق نتایج به دست آمده، با گذشت زمان آستنیته جزئی کسر فاز آسفریت و سختی مطابق مدل جانسون-اورامی زیاد شدند. نسبت به نمونه ADI، با افزایش زمان تا min 12، برایند نیروی برش و توان برشی ویژه به ترتیب 50%-40% و 36% کاهش یافت. وابستگی برایند نیروی برش به نرخ پیشروی به صورت یک رابطه توانی با مقدار توان 73/0، 80/0 و 85/0 به ترتیب برای نمونههای FDI، DMS و ADI تعیین شد. نتایج به دست آمده نشان داد در فرایند آستنیته همدما انتخاب زمان حرارت دهی، نقشی کلیدی در دستیابی به چدن ADI با قابلیت ماشینکاری مطلوب دارد.
Austempered ductile iron (ADI) is well known as useful engineering material and can compete with forged steel in many applications. But its poor machinability have caused to be not quite welcomed by manufacturers. Therefore, it is essential to modify production process to achieve desire machinable ADI by controlling of heat treatment parameters. The present study was, therefore, performed to clarify the influence of austenitizing time on cutting forces in rough turning operations and to obtain the optimum austenitizing duration of improving the machinability. To attain this goal, the samples of ferritic ductile iron (FDI) were austenitized at temperature of 900 oC for 5 to 60 min, followed by austempering into a salt bath at 370°C for 60 min to produce dual matrix structures (DMS) with different ausferrite volume fractions. Image analysis was employed to quantitatively evaluate the microstructure. The hardness were determined via Brinell test method. As a criteria adopting for machinability, cutting forces measured by Kistler dynamometer. The results indicated that the ausferrite fraction and hardness increased by increasing austentizing time according to the Johnson-Avrami model. Increasing austenitizing time to 12 min resulted in 40-50% and 36% improvement on the resultant cutting force and Specific cutting power, respectively, when compared to ADI. The resultant cutting force was correlated with feed rate as a power model with exponents of 0.73, 0.80 and 0.85 for FDI, DMS and ADI, respectively. Obtained results indicates the selection of proper duration of isothermal austenitizing play the key role to achieve ADI with desire machinability.
1- N. Bhople, S. Patil, M. Harne, S. Dhande, “Austempering parameters and machinability of austempered ductile iron: A comprehensive review on effective parameters”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Issue 2, pp. 1197-1211, 2016.
2- M.C. Cakir, Y. Isik, “Investigating the machinability of austempered ductile irons having different austempering temperatures and times”, Materials and Design, Vol. 29, pp. 937-942, 2008.
3- H. Zhang, Y. Wu, Q. Li, X. Hong, “Mechanical properties and rolling-sliding wear performance of dual phase austempered ductile iron as potential metro wheel material”, Wear, Vol. 406–407, pp. 156–165, 2018.
4- D. Rousière, J. Aranzabal, “Development of a new mixed (ferritio-ausferritic) structures for spheroidal graphite irons”, Metallurgical Science and Technology, Vol. 18, No. 1, pp. 24-29, 2000.
5- A. Nofal, “Advances in the metallurgy and applications of ADI”, Journal of Metallurgical Engineering, Vol. 2, Issue 1, pp. 1-18, 2013.
6- J. Pilc, M Šajgalík, J. Holubják, M. Piešová, L. Zaušková, O. Babík, V. Kuždák, J. Rákoci, “Austempered ductile iron machining”, Technological Engineering, Vol. 12, Issue 1, pp. 9-12, 2015.
7- م. شبگرد، ح. عباسی ایرانلو، ه. عیوضی باقری، ا. جعفری، "مقایسه قابلیت ماشینکاری چدن نشکن آستمپر شده(ADI) و فولاد کم آلیاژی 42CrMo4 در فرایند تراشکاری"، ﻣﺠﻠﻪی ﻣﻮاد ﻧﻮﻳﻦ، ﺟﻠﺪ 4، شماره 3، ص 20-11، سال 1393.
8- م. ﺗﺪﻳﻦ ﺳﻌﻴﺪی، ن. ورﻫﺮام، ج. نﮔﺴﻮارا راؤ، ن. ﺑﺎﻗﺮﺳﺎﻳﻲ، " ﺑﻬﺒﻮد وﻳﮋﮔﻲﻫﺎی ﻣﻜﺎﻧﻴﻜﻲ ﭼﺪنﻫﺎی ﻧﺸﻜﻦ آﺳﺘﻤﭙﺮ ﺟﻬﺖ اﻓﺰاﻳﺶ ﻗﺎﺑﻠﻴﺖ ﻣﺎﺷﻴﻦﻛﺎری واستحکام خستگی"، ﻣﺠﻠﻪی ﻣﻮاد ﻧﻮﻳﻦ، ﺟﻠﺪ 1، شماره 3، ص 22-11، سال 1390.
9- K. Branduberg, “Successfully machning austemperd ductile iron (ADI)”, Society of Manufacturing Engineers, May 2002.
10- ن. ﻋﺮب، "تاﺛﻴﺮ ﺗﺮﻛﻴﺐ ﺷﻴﻤﻴﺎﻳﻲ و ﻋﻤﻠﻴﺎت ﺣﺮارﺗﻲ ﺑﺮ ﺧﻮاص، ﺳﺎﺧﺘﺎر ﻣﻴﻜﺮوﺳﻜﻮﭘﻲ و ﻗﺎﺑﻠﻴﺖ ﻣﺎﺷﻴﻨﻜﺎری ﭼﺪنﻫﺎی ﻧﺸﻜﻦ آﺳﺘﻤﭙﺮ"، فصلنامه علمی و پژوهشی مهندسی مواد مجلسی، سال سوم، شماره چهارم، ص39-33، سال 1388.
11- J. Aranzabal, G. Serramoglia, C.A. Goria, D. Rousière, “Development of a new mixed (ferritic-ausferritic) ductile iron for automotive suspension parts”, International Journal of Cast Metals Research, Vol. 16, Nos. 1-3, pp. 185-190, 2003.
12- A.P. Druschitz, D.C. Fitzgerald, “Machinable austempered cast iron article having improved machinability, fatigue performance and resistance to environmental cracking and a method of making the same”, U.S. Patent No. 7,070,666, July 4, 2006.
13- A.P. Druschitz, D. Fitzgerald, “MADI™: Introducing a new machinable austempered ductile iron”, SAE Technical Paper #2003-01-0831, Society of Automotive Engineers, Warrendale, PA, 2003.
14- A.M. Rashidi, M. Moshrefi-Torbati, “Dual matrix structure (DMS) ductile iron: The effect of heat treating variables on the mechanical properties”, International Journal of Cast Metals Research, Vol. 13, pp. 293-297, 2001.
15- C. Valdés, M.J. Pérez López, M. Figueroa, L.E. Ramírez, “Austempered ductile iron with dual matrix structures”, Revista Mexicana de Física, Vol. 55, No. 1, pp. 48-51, 2009.
16- A. Basso, J. Sikora, “Review on production processes and mechanical properties of dual phase austempered ductile iron”, International Journal of Metalcasting, Vol. 6, No. 1, pp. 7-14, 2012.
17- I. Ovali, A. Mavi, “Investigating the machinability of austempered ductile irons with dual matrix structures”, International Journal of Materials Research, Vol. 104, No. 2, pp. 192-198, 2013.
18- ع.م. رشیدی، " بررسی خواص چدن نشکن با زمینه دوفازی فریتی-مارتنزیتی" ، نشریه ریخته گری، سال نوزدهم، شماره 57، ص87-83، سال 1377.
19- N. Wade, Y. Ueda, “Mechanical properties of ductile cast iron with duplex matrix”, Transactions of the Iron and Steel Institute of Japan, Vol. 21, No. 2, pp. 117–126, 1981.
20- A. Basso, M. Caldera, M. Chapetti, J. Sikora, “Mechanical characterization of dual phase austempered ductile iron”, ISIJ International, Vol. 50, No. 2, pp. 302-306, 2010.
21- C. Verdu, J. Adrien, A. Reynaud, “Contributions of dual phase heat treatments to fatigue properties of SG cast irons”, International Journal of Cast Metal Research, Vol. 18, No. 6, pp. 346-354, 2005.
22- Y. Sahin, M. Erdogan, V. Kilicli, “Wear behaviour of austempered ductile irons with dual matrix structures”, Materials Science and Engineering A, Vol. 444, pp. 31-38, 2007.
23- ع. عابدینزاده، ی. مهدوی اقدم، س. یزدانی، ب. آویشن، "بررسی قابلیت ماشینکاری چدن داکتیل آستنیته شده در ناحیه دوفازی فریت و آستنیت"، پنجمین همایش مشترک انجمن مهندسی متالورژی ایران و انجمن علمی ریخته گری ایران، دانشگاه صنعتی اصفهان، اصفهان، ایران، 3-4 آبان 1390.
24- S.C. Murcia, M.A. Paniagua, E.A. Ossa, “Development of as-cast dual matrix structure (DMS) ductile iron”, Materials Science & Engineering A, Vol. 566, pp. 8-15, 2013.
25- T. Nobuki, M. Hatate, T. Shiota, “Mechanical characteristics of spheroidal graphite cast irons containing Ni and Mn with mixed ferrite and bainitic ferrite microstructure”, International Journal of Cast Metals Research, Vol. 21, No. 1, pp. 31-38, 2008.
26- م. رشیدی، م.ع. بوترابی، "اﺛﺮ ﭘﺎراﻣﺘﺮﻫﺎی ﻋﻤﻠﯿﺎت ﺣﺮارﺗﯽ دوﻓﺎزیﺳﺎزی ﺑﺮ رﯾﺰﺳﺎﺧﺘﺎر ﭼﺪن ﻧﺸﮑﻦ آﻟﻮﻣﯿﻨﯿﻮم دار"، ﻣﺠﻠﻪ ﻣﻮاد ﻧﻮﯾﻦ، ﺟﻠﺪ4، ﺷﻤﺎره2، ص 78-67، سال 1392.
27- ا. اوحدی، ج. حجازی، "تحوّل در تولید چدن نشکن با ساختار دوگانه با بهره گیری از عملیات حرارتی"، نشریه ریخته گری، سال پانزدهم، شماره 2، ص57-49، سال 1373.
28- Kobayashi, T. and Yamada S., “Effect of holding time in the (α + γ) temperature range on toughness of specially austempered ductile iron”, Metallurgical and Materials Transactions, Vol. 27A, pp. 1961-1971, 1996.
29- K. Geels, Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, ASTM International, West Conshohocken, PA, 2007.
30- م. رازفر، اصول ماشینکاری وابزارشناسی، مرکز نشر دانشگاه صنعتی امیرکبیر، 1382.
31- J. Liu, “Unique microstructure and excellent mechanical properties of ADI”, China Foundry, Vol. 3, No. 4, pp. 253-257, 2006.
32- M.A.Y. Gonzalez. Modelling the Microstructure and Mechanical Properties of Austempered Ductile Irons. Ph.D. thesis, University of Cambridge, 2001.
33- K. Barmak, A Commentary on: “Reaction kinetics in processes of nucleation and growth”, Metallurgical and Materials Transactions B, Vol. 49, No. 6, pp. 3616–3680, 2018.
34- J. Burke, The Kinetics of Phase Transformations in Metals, Pergamon, Oxford, 1965.
35- D.A. Stephenson, J.S. Agapiou, Metal Cutting Theory and Practice, 3rd Ed., CRC Press, Taylor & Francis Group, LLC, 2016.
_||_