مطالعه خواص نوری، رفتار حرارتی و پایداری گرمایی ذرات پنتااریتریتول تترانیترات پوششدهی شده با نانورنگدانه لیتول روبین توسط تکنیک فراصوت با استفاده از روش طراحی آزمایش تاگوچی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینمعصومه صابری لمراسکی 1 , سعید بابایی 2 , سیدمهدی پورمرتضوی 3
1 - دانشجوی دکتری، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی شیمی و مهندسی شیمی، تهران، ایران
2 - دانشیار شیمی تجزیه، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی شیمی و مهندسی شیمی، تهران، ایران
3 - دانشیار شیمی تجزیه، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی شیمی و مهندسی شیمی، تهران، ایران
کلید واژه: خواص نوری, پوششدهی, پتن, روش فراصوت, طراحی آزمایش تاگوچی,
چکیده مقاله :
در این تحقیق به منظور پوششدهی ذرات پنتااریتریتول تترانیترات (پتن) از ترکیب استان و نانورنگدانه لیتول روبین بی قرمز 57:1 (NLR) استفاده گردید. پس از مطالعات ساختاری نانوکامپوزیت پتن-استان-NLR توسط روشهای مادون قرمز (FT-IR) و میکروسکوپ الکترونی روبشی نشر میدانی (FESEM)، از روش طراحی آماری تاگوچی برای بررسی و بهینهسازی میزان انعکاس نور نانوکامپوزیت در طول موج nm 532 استفاده شد. اثر چهار عامل غلظت استان، غلظت NLR، سرعت همزدن و دمای حمام فراصوت در سه سطح برمیزان انعکاس نور مورد بررسی قرار گرفت و تحلیل واریانس (ANOVA) نتایج نشان داد که غلظت NLR با درصد مشارکت 36/79 دارای بالاترین اثر میباشد. شرایط بهینه برای دستیابی به حداقل میزان انعکاس نورشامل 5% وزنی استان، 7%درصد وزنی NLR، سرعت هم زدن rpm 400 و دمای حمام فراصوت ºC50 بدست آمد. حداقل میزان انعکاس نور با تحلیل واریانس دادهها برای این شرایط بهینه برابر 67/1±97/4 درصد پیشبینی شد. میانگین نتایج تجربی برای میزان انعکاس نور نانوکامپوزیت تحت شرایط بهینه نیز برابر با 90/5 درصد حاصل شد. در ادامه رفتار حرارتی و پایداری در خلاء نمونه بهینه مورد بررسی قرار گرفت که نتایج حاصل نشاندهنده عدم تغییر در دمای ذوب و تجزیه نانوکامپوزیت نسبت به پتن خالص و بیانگر سازگاری NLR و استان با ترکیب پتن است.
In this research, in order to coating pentaerythritol tetranitrate (PETN) particles, estane compound and nano-pigment of red Lithol rubine B 57:1 (NLR) were used. After structural studies of nanocomposite by infrared (FT-IR) and field emission scanning electron microscopy (FESEM), Taguchi statistical design method was used to investigation and optimization of optical reflectance of nano-composite at 532 nm. The effect of four factors of estane concentration, NLR concentration, stirring speed and ultrasonic bath temperature in three levels on optical reflection was investigated and analysis of variance (ANOVA) showed that NLR concentration with the participation of 79.36 percent had highest effect. Optimal conditions to achieve a minimum light reflectance were obtained of estane 5 wt%, NLR 7 wt%, stirring speed 400 rpm and ultrasonic bath temperature of 50°C. The lowest light reflectance by analyzing the data variance for optimum conditions was estimated 4.97 ± 1.67. The mean experimental result for optical reflectance of the synthesized nano-composite under optimum conditions was 5.90 percent. Follows, thermal behavior and vacuum stability of the optimal sample was investigated that the results show that the melting point temperature and decomposition of nano-composite are not different compared to the pure PETN Indicating the compatibility of NLR and estane with PETN.
References:
1- R. Sanghavi, S. Sundaram, M. Kulkarni, S. Asthana, B. Bohra, "Studies on ignition of TPE based RDX propellants by laser impulse", 2005.
2- A. Atwood, K. Ford, D. Bui, P. Curran, T. Lyle, "Radiant ignition studies of ammonium perchlorate based propellants", Progress in Propulsion Physics, Vol. 1, pp. 121-140, 2009.
3- R. Akhmetshin, A. Razin, V. Ovchinnikov, A. Skripin, V. Tsipilev, V. Oleshko, V. Zarko, A. Yakovlev, Effect of laser radiation wavelength on explosives initiation thresholds, in: Journal of Physics: Conference Series, IOP Publishing, 2014, pp. 012015.
4- D.N. Herreros, X. Fang, "Laser ignition of elastomer-modified cast double-base (EMCDB) propellant using a diode laser", Optics & Laser Technology, Vol. 89, pp. 21-26, 2017.
5- H.M. Wang, X. Chen, C. Zhao, NEPE propellant ignition and combustion under laser irradiation, in: Advanced Materials Research, Trans Tech Publ, 2014, pp. 10-14.
74 مطالعه خواص نوری، رفتار حرارتی و پایداری گرمایی ذرات پنتااریتریتول تترانیترات پوششدهی شده با نانورنگدانه...
6- N. S. Jang, S. H. Ha, K. H. Kim, M.H. Cho, S.H. Kim, J.-M. Kim, "Low-power focused-laser-assisted remote ignition of nanoenergetic materials and application to a disposable membrane actuator", Combustion and Flame, Vol. 182, pp. 58-63, 2017.
7- X. Fang, W.G. McLuckie, "Laser ignitibility of insensitive secondary explosive 1, 1-diamino-2, 2-dinitroethene (FOX-7)", Journal of hazardous materials, Vol. 285, pp. 375-382, 2015.
8- I. Assovskiy, G. Melik-Gaikazov, G. Kuznetsov, Direct laser initiation of open secondary explosives, in: Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012014.
9- X. Fang, M. Sharma, C. Stennett, P.P. Gill, "Optical sensitisation of energetic crystals with gold nanoparticles for laser ignition", Combustion and Flame, Vol. 183, pp. 15-21, 2017.
10- H. Oestmark, N. Roman, "Laser ignition of pyrotechnic mixtures: Ignition mechanisms", Journal of applied physics, Vol. 73, pp. 1993-2003, 1993.
11- W. Hawthorne, D. Weddell, H. Hottel, "Third Symposium on Combustion and Flame and Explosion Phenomena", The Williams and Wilkins Co., Baltimore, Maryland, Vol., pp. 266-288, 1949.
12- E.D. Aluker, A.G. Krechetov, A.Y. Mitrofanov, A.S. Zverev, M.M. Kuklja, "Understanding limits of the thermal mechanism of laser initiation of energetic materials", The Journal of Physical Chemistry C, Vol. 116, pp. 24482-24486, 2012.
13- M.A. Ilyushin, I.V. Tselinskiy, A.V. Smirnov, I.V. Shugalei, "Physicochemical properties and laser initiation of a copper perchlorate complex with 3 (5)-hydrazino-4-amino-1, 2, 4-triazole (HATr) as a ligand", Central European Journal of Energetic Materials, Vol. 9, pp. 3-16, 2012.
14- B. Aduev, D. Nurmukhametov, "The influence of added aluminum nanoparticles on the sensitivity of pentaerythritol tetranitrate to laser irradiation", Russian Journal of Physical Chemistry B, Vol. 5, pp. 290, 2011.
15- I.Y. Zykov, "The critical initiation energy density of PETN with aluminum nanoparticle additives", Modern fundamental and applied researches, Vol. 1, pp. 79-84, 2013.
16- X. Fang, S.R. Ahmad, "Laser ignition of an optically sensitised secondary explosive by a diode laser", Central European Journal of Energetic Materials, Vol. 13, pp., 2016.
17- J.H. Kim, M.H. Cho, K.J. Kim, S.H. Kim, "Laser ignition and controlled explosion of nanoenergetic materials: The role of multi-walled carbon nanotubes", Carbon, Vol. 118, pp. 268-277, 2017.
18- J.H. Kim, J.Y. Ahn, H.S. Park, S.H. Kim, "Optical ignition of nanoenergetic materials: The role of single-walled carbon nanotubes as potential optical igniters", Combustion and Flame, Vol. 160, pp. 830-834, 2013.
19- B. Huang, X. Hao, H. Zhang, Z. Yang, Z. Ma, H. Li, F. Nie, H. Huang, "Ultrasonic approach to the synthesis of HMX@ TATB core–shell microparticles with improved mechanical sensitivity", Ultrasonics sonochemistry, Vol. 21, pp. 1349-1357, 2014.
75 مجله مواد نوین/ جلد 9/شماره 3 / بهار 1398
20 ج. وحدتی خاکی، خ. یوسفی و م. زبرجد، " بهینه سازی -
شرایط آزمایش با روش آماری تاگوچی برای ساخت نانو
ذرات هیدروکسی آپاتیت به روش سل ژل،" نشریه مواد -
نوین، دوره 4 شماره 15 ، ص 1 - 10 ، اردیبهشت 1393 .
21 ر. معمازاده، س. جوادپور و . پناهی، " بهینه سازی -
عوامل موثر بر اندازه نانو ذرات اکسید قلع به روش
تاگوچی،" نشریه مواد نوین، دوره 3 شماره 7 ، ص 11 -
20 ، اسفند 1391 .
22 س. پایدار، م. شریعت و س. جوادپور، " بهینه سازی -
پارامترهای فریند ریخته گری نواری زیرکونیا تثبیت شده
با ایتریا به وسیله طراحی تاگوچی به عنوان الکترولیت
پیل سوختی اکسید جامد،" نشریه مواد نوین، دوره 7
شماره 4، ص 47 - 56 ، اسفند 1396 .
23- A. K. Nandi, M. Ghosh, V.B. Sutar, R.K. Pandey, "Surface coating of cyclo tetramethylene tetranitramine (HMX) crystals with the insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB)", Central European Journal of Energetic Materials, Vol. 9, pp. 119-130, 2012.
24- J. S. Lee, C. K. Hsu, C. L. Chang, "A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX", Thermochimica Acta, Vol. 392, pp. 173-176, 2002.
25- H.R. Pouretedal, S. Damiri, M. Ravanbod, M. Haghdost, S. Masoudi, "The kinetic of thermal decomposition of PETN, Pentastite and Pentolite by TG/DTA non-isothermal methods", Journal of Thermal Analysis and Calorimetry, Vol. 129, pp. 521-529, 2017.
26- M. Künzel, Q.-L. Yan, J. Šelešovský, S. Zeman, R. Matyáš, "Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX", Journal of Thermal Analysis and Calorimetry, Vol. 115, pp. 289-299, 2014.
27- C. Niu, B. Jin, R. Peng, Y. Shang, Q. Liu, "Preparation and characterization of insensitive HMX/rGO/G composites via in situ reduction of graphene oxide", RSC Advances, Vol. 7, pp. 32275-32281, 2017.