مروری بر استخراج لیتیم از مینرالهای آن - مطالعه موردی: استخراج لیتیم از کنسانتره اسپودیومن به روش تشویه سولفاتی در شرایط آسیاکاری
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نویننادر ستوده 1 * , عطالله نصرتی 2 , نیکلاس ج. ولهام 3
1 - گروه مهندسی مواد- دانشکده فنی و مهندسی- دانشگاه یاسوج- یاسوج- ایران
2 - دانشگاه ادیت کاون- دانشکده مهندسی- گروه مهندسی شیمی- استرالیای غربی-پرت
3 - دانشگاه ادیت کاون- دانشکده مهندسی- گروه مهندسی شیمی- استرالیای غربی-پرت
مرکز متالورژی ولهام، ساوت لیک، استرالیای غربی، پرت
کلید واژه: آسیاکاری, سولفات سدیم, کنسانتره اسپودیومن, لیچینگ, مینرال های لیتیم,
چکیده مقاله :
با توجه به ویژگیهای شاخص فلز لیتیم، مطالعات و پژوهشهای زیادی در سالهای گذشته در رابطه با فراوری و استخراج لیتیم از شورابهها و منایع پگماتیتی آن انجام شده است. لپیدولیت، اسپودیومن، پتالیت و زینوالدیت از جمله معروفترین و مهمترین مینرال لیتیم هستند که از میان آنها اسپودیومن، فراوانترین مینرال پگماتیتی لیتیم به شمار میرود. رشد روز افزون تقاضا برای باتریهای لیتیمی در سالهای اخیر منجر به افزایش تولید لیتیم شده است. این مقاله بخشی از پژوهشی در رابطه با فراوری کانیهای لیتیم است که در برنامه فرصت مطالعاتی در دانشگاه ادیت کاون (استرالیا) انجام شده است. در این مقاله ابتدا، روشهای گوناگون استخراج و فراوری لیتیم از مینرالهای آن مورد بررسی قرار میگیرد. در ادامه برخی از نتایج فرآیند تشویه سولفاتی کنسانتره اسپودیومن با سولفات سدیم در شرایط آسیاکاری مورد بررسی قرار میگیرد. نتایج آزمایشگاهی نشان داد تشویه در دمای 1000 درجه سانتیگراد برای مخلوط 5 ساعت آسیاکاری سولفات سدیم-اسپودیومن، منجر به تشکیل فاز سولفات سدیم لیتیم (LiNaSO4) قابل حل در آب میشود. در کنسانتره اسپودیومن 5 ساعت آسیاکاری، تغییر فاز آلفا به بتا اسپودیومن در دمای کمتری نسبت به نمونه بدون آسیاکاری رخ میدهد. نتایج نشان داد، آسیاکاری نقش موثری در واکنشهای مرحله تشویه در مخلوط سولفات سدیم-اسپودیومن دارد. محصولات کلسین بدست آمده از تشویه مخلوط 5 ساعت آسیاکاری در آب داغ قابل حل بوده و استفاده از آب داغ به عنوان عامل لیچینگ، مزایای زیادی دارد. میزان انحلال لیتیم در این پژوهش برای مخلوط 5 ساعت آسیاکاری پس از گرمایش در دمای 1000 درجه سانتیگراد به 93% رسید.
Due to significant characters of metallic lithium, many research and studies have been done on the extraction and processing of lithium form brine sources and its pegmatite deposits. Lepidolite, spodumene, petalite and zinnwaldite are the most important lithium minerals however, spodumene is the most abundant lithium minerals containing pegmatite. Lithium production has substantially increased in the past few years due to demand for lithium electronic batteries. This article is a part of research project entitled “lithium ore processing” which was undertaken during sabbatical leave at Edith Cowan University (Australia). Different processes and routs for extraction of lithium form its minerals are studied in this article. Some results of sulfation roasting with sodium sulfate for spodumene concentrate are investigated in this article under ball milling conditions. The experimental results showed that roasting reactions at temperature of 1000 ºC results in formation of the water-soluble phase, i.e. lithium sodium sulfate (LiNaSO4), in the 5 h milled mixture of sodium sulfate-spodumene. The α to ß phase transition in the spodumene concentrate occurred at lower temperature in 5 h milled samples comparing to the un-milled sample. The results showed that ball milling plays significant role in the roasting reactions stage for spodumene-sodium sulfate mixture. The produced calcine from roasting of 5 h milled mixture of spodumene-sodium sulfate can dissolve in hot water during leaching stage and water has significant advantages as leachant agent. The dissolution of lithium reached to 93% for the 5 h milled samples after heating at 1000°C in this research.
[1] L. Talens Peiro, G. Villalba Mendeza and R. U. Ayres, “Lithium: Sources, Production, Uses, and Recovery Outlook”, Journal of Metals, Vol. 65, No. 8, pp.986-996, 2013.
[2] P. Meshram, B.D. Pandey and T.R.Mankhand, “Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review”, Hydrometallurgy, Vol.150, pp.192-208, 2014.
[3] F. Margarido, N. Vieceli, F. Durao, C. Guimaraes and C.A. Nogueira, “Minero-metallurgical processes for lithium recovery from pegmatitic ores”, Comunicações Geológicas, Vol.101, Especial II, 795-798, 2014.
[4]- مسعود نعمتی، پیام سراج و امیرحسین صراف پور، "بررسی پتانسیل های کشور جهت اکتشاف، استحصال و بازیافت فلز لیتیم به عنوان مهمترین ذخیره ساز انرژی در دنیا"، مطالعات انرژی، صنعت و معدن (گروه معدن و صنایع معدنی)، مدیران مطالعه: بابک بهادری، سعید خانی، مرکز پژوهش ها مجلس شورای اسلامی، شماره مسلسل 16145، 23/8/1397.
[5] N.J. Welham, A. Nosrati, N. Setoudeh, “Lithium Ore Processing – an Overview of the current and new processes”, metallurgical plant design and operating strategies – World’s Best Practice (MetPlant 2017) 11–12 September 2017, Perth WA, Australia, 185-194, 2017.
[6]https://en.wikipedia.org/wiki/Spodumene.
[7]N. Kh. Salakjani, Pr. Singh and A. N. Nikoloski, “Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: Conventional heating”, Minerals Engineering, Vol.98, pp. 71-79, 2016.
[8]O. Peltosaari, P. Tanskanen, E-P. Heikkinen and T. Fabritius, “α → γ → β-phase transformation of spodumene with hybrid microwave and conventional furnaces”, Minerals Engineering, Vol. 82, pp.54-60, 2015.
[9]N. P. Kotsupalo, L. T. Menzheres, A. D. Ryabtsev and V. V. Boldyrev, “Mechanical Activation of α-Spodumene for Further Processing into Lithium Compounds, Theoretical Foundations of Chemical Engineering” Inorganic Technology, , Vol. 44, No. 4, pp. 503–507, 2010.
[10] R. L. Moore, J.P. Mann, A. Montoya and B. S. Haynes, “In situ synchrotron XRD analysis of the kinetics of spodumene phase transition”, Phys. Chem. Chem. Phys. Vol. 20, pp.10735, 2018.
[11] H.J. Gasalla, E.F. Aglietti, J.M.P. Lopez and E. Pereira, “Changes in physicochemical properties of α-spodumene by mechanochemical treatment”, Mater. Chem. Phys. Vol. 17, pp.379-389, 1987.
[12] A. A. Abdullah, Hans C. Oskierski, M. Altarawneh, G. Senanayake, G. Lumpkin and B. Z. Dlugogorski, “Phase transformation mechanism of spodumene during its calcination”, Minerals Engineering, Vol. 140, 105883, 2019.
[13] W.A. Averill and D.L. Olsen, “A Review of extractive processes for lithium from ores and brines”, Energy, Vol.3, pp.305-313, 1978.
[14] Q. Yan, X. Li, Zh. Wang, J. Wang, H. Guo, Q. Hu, W. Peng and Xi. Wu, “Extraction of lithium from lepidolite using chlorination roasting-water leaching process”, Transactions of Nonferrous Metals Society of China, Vol. 22, 1753-1759, 2012.
[15] L.I. Barbosa, G. Valente, R.P. Orosco and J.A. Gonzalez, “Lithium extraction from -spodumene through chlorination with chlorine gas”, Minerals Engineering, Vol.56, pp.29-34, 2014.
[16] Q. Yan, X. Li, Zh. Wang, Xi. Wu, J. Wang, H. Guo, Q. Hu and W. Peng, “Extraction of lithium from lepidolite by sulfation roasting and water leaching”, International Journal of Mineral Processing, Vol.110-111, pp.1-5, 2012.
[17] J. Lee, “Extraction of Lithium from Lepidolite Using Mixed Grinding with Sodium Sulfide Followed by Water Leaching”, Minerals, Vol.5, pp.737-743, 2015.
[18] N. Vieceli, C. A. Nogueira, M. F. C. Pereira, F. O. Durao, C. Guimaraes and F. Margarido, “Optimization of Lithium Extraction from Lepidolite by Roasting Using Sodium and Calcium Sulfates”, Mineral Processing and Extractive Metallurgy Review, Vol. 38, No. 1, pp. 62–72, 2017.
[19] V. T. Luong, D. J. Kang, J. W. An, M. J. Kim and T. Tran, “Factors affecting the extraction of lithium from lepidolite”, Hydrometallurgy, Vol.134-135, pp. 54-61, 2013.
[20] V.T. Luong, D.J. Kang, J.W. An, D.A. Dao, M.J. Kim and T. Tran, “Iron sulphate roasting for extraction of lithium from lepidolite”, Hydrometallurgy, Vol. 141, pp.8-16, 2014.
[21] T.T. Hien-Dinh, V.T. Luong, R. Gieré and T. Tran, “Extraction of lithium from lepidolite via iron sulphide roasting and water leaching”, Hydrometallurgy, Vol. 153, pp.154-159, 2015.
[22] G. D. Rosales, M. del Carmen Ruiz and M. H. Rodriguez, “Novel process for extraction of lithium form -spodumene by leaching with HF”, Hydrometallurgy, Vol. 147-148, pp.1-6, 2014.
[23] G. D. Rosales, M. C. Ruiz and M. H. Rodriguez, “Study of the extraction kinetics of lithium by leaching -spodumene with hydrofluoric acid”, Minerals, Vol. 6(98), pp.1-12, 2016.
[24] Y. Chen, Qi. Tian, B. Chen, Xi. Shi and T. Liao, “Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process”, Hydrometallurgy, Vol. 109 (1–2), pp. 43-46, 2011.
[25]- نادرستوده، "فرآوری کانه های لیتیم"، گزارش فرصت مطالعاتی- دانشگاه ادیت کاون- استرالیای غربی-پرت، با همکاری عطالله نصرتی و نیکلاس ج. ولهام، (1398-1397).
[26]- نادر ستوده، محمد علی عسکری زمانی و عباس محصل، "احیای کربوترمیک کنسانتره سلستیت معدن لیکک"، مجله مواد نوین، جلد1، شماره 3،ص. 33-44، بهار 1390.
[27]- نادر ستوده، محمد علی عسکری زمانی و عباس محصل،"تاثیر فرآیند آسیاکاری مکانیکی بر احیا کربوترمیک زیرکن"، مجله مواد نوین، جلد 3، شماره 3،ص. 99-89، بهار 1392.
[28] N. Setoudeh and N.J. Welham, Metallothermic reduction of zinc sulfide induced by ball milling, Journal of Materials Science, Vol.52, pp.6388-6400, 2017.
[29] N. Setoudeh, C. Zamani and M. Sajjadnejad, Formation of ZnO/Ni0.6Zn0.4O Mixture Using Mechanical Milling of Zn-NiO, Materials Transactions, Vol. 57(9), pp.1597-1601, 2016.
[30]- نادر ستوده ،" تاثیر فرآیند فعالسازی مکانیکی در مخلوط آلومینا-زیرکن بر واکنش تشکیل مولیت-زیرکونیا"، مجله مواد نوین ، جلد 2 ، شماره 3 ، بهار 1391، ص 38-27.
[31] N. Vieceli, C. A. Nogueira, M. F.C. Pereira, A. P. Soares Dias, F. O. Durao, C. Guimaraes, and F. Margarido, “Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate”, Minerals Engineering, Vol.102, pp.1-14, 2017.
[32] N. Vieceli, C. A. Nogueira, M.F.C. Pereira, F. O. Durao, C. Guimaraes and F. Margarido, “Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite”, Hydrometallurgy, Vol. 175, pp.1-10, 2018.
[33] T. Tran, V. T. Luong, Lithium Process Chemistry, Resources, Extraction, Batteries and Recycling, Ch.3. Lithium Production Processes, p.81-124, Elsevier, 2015.
_||_