بررسی اثر زینتر دو مرحله ای بر ریزساختار و مقاومت فشاری داربست نانوساختار فورستریتی به روش فوم فدا شونده
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینسید مهدی میرهادی 1 * , امیرعباس نوربخش 2 , نجمه لطفیان 3 , پریسا مشایخی 4
1 - مربی ، گروه مهندسی مواد ، واحد شهرضا ،دانشگاه آزاد اسلامی ،شهرضا،ایران
2 - دانشیار، گروه مهندسی مواد ، واحد شهرضا ،دانشگاه آزاد اسلامی ،شهرضا،ایران
3 - دانشگاه آزاد اسلامی، واحد شهرضا، باشگاه پژوهشگران جوان و نخبگان، شهرضا، ایران
4 - کارشناسی ارشد،گروه مهندسی مواد ، واحد شهرضا ،دانشگاه آزاد اسلامی ،شهرضا،ایران
کلید واژه: تخلخل, داربست فورستریتی, زینتر دو مرحلهای, فوم فدا شونده,
چکیده مقاله :
در این پژوهش سنـتز موفقیت آمیز داربست نانو ساختار فورستریتی (Mg2SiO4)با استفاده از فوم فدا شوندهی دارای استحکام فشاری بالای مورد استفاده در کاربردهای مهندسی بافت بررسی شده است. این ساختارها میتوانند وابسته به تخلخل، استحکام مکانیکی و آرایشی که دارند؛ به عنوان داربستهای زیست فعال در مهندسی بافتهای سخت مورد استفاده قرار گرفته و زمینه مناسبی برای هدایت و یا تحریک استخوان ایجاد کنند. برای این منظور ابتدا از یک دوغاب همگن فورستریتی استفاده گردید و قطعات فوم فدا شوندهای که با ابعادcm1cm×1cm×1 برش یافته بود به مدت 5 دقیقه در دوغاب مذکور غوطهور گردید. پس از غوطهوری فومهای پر شده از دوغاب با حفرات نسبتا باز در زمانها و دماهای متفاوت با روش پخت دو مرحلهای مورد زینتر قرار گرفتند. استحکام فشاری و تخلخلهای داربست به ترتیب در طی عملیات حرارتی، Mpa 16/24-03/0و 58-88 % می باشد.یکی از نمونهها ( نمونه تهیه شده با برنامه حرارتی J )مشتمل بر ذرات با ابعاد و دانه بندی 24 تا35 نانومتر و حفرات و تخلخلهای موجود در آن در ابعاد میکرون بود که توسط میکروسکوپ الکترونی روبشی (SEM ) مورد مشاهده قرار گرفت. همچنین از یک دستگاه پراش سنج اشعه ایکس (XRD) برای تایید تشکیل فورستریت استفاده شد.
This paper reports the successful synthesis of nano structured forsterite (Mg2SiO4)scaffold with high compressive strength for tissue engineering application. Forsterite slurry was prepared and pre-cut foams were immersed in the slurry for 5 min. The saturated foams were then annealed at various times and temperatures using the two step sintering method. The compressive strength and porosity of the scaffolds were in the range of 0.03-24.16 MPa and 58-88% depends on the heat treatment process, respectively. The J samples consisted of grains in the range of24 to35 nm and micron size pores that could be detected by SEM observation.
- S.I.R. Esfahani, F. Tavangarian, R. Emadi, "Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement", Mater. Lett, vol. 62, pp. 3428-3430 2008.
- R. Emadi, S.I.R. Esfahani, F. Tavangarian, "A novel, low temperature method for the preparation of ß-TCP/HAP biphasicnano structured ceramic scaffold from natural cancellous bone", Mater. Lett,vol.64, pp. 993-996.2010 .
- R.Emadi, F.Tavangarian, S.R.I. Esfahani, A. Sheikhhosseini, M.Kharaziha, "Nanostructured Forsterite Coating Strengthens Porous Hydroxyapatite for Bone Tissue Engineering", J. Am. Ceram. Soc, vol. 93, pp. 2679–2683.2010.
- R. Emadi, F. Tavangarian, S.I.R.Esfahani, "Biodegradable and bioactive properties of novel bone scaffold coated with nano crystalline bioactive glass for bone tissue engineering", Mater. Lett, vol. 64, pp. 1528–1531. 2010.
- M. Vallet-Reg, "Revisiting ceramics for medical application", Dalton Trans, Vol.44, pp. 5211–5220. 2006.
- V. Karageorgiou, D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesis", Biomaterials, vol. 26 , pp. 5474–5491. 2005.
- A.J. Salgado, O.P. Coutinho, R.L. Reis, "Bone tissue engineering: state of the art and future trends", Macromol. Biosci, vol. 4, pp. 743–765. 2004.
- A. Rohlmann, H. Zilch, G. Bergman, "Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties", Arch. Orthop. Trauma Surg, vol. 97 ,pp. 95–102. 1980.
- F. Tavangarian, , R. Emadi, S.I.R. Esfahani, "A novel method to synthesis of β-TCP/HA biphasic nanocrystalline powder by using bovine bone", Int. J. Mod. Phys. B, vol. 24 ,pp. 3365-3372. 2010.
- F. Tavangarian, R. Emadi, "Nanostructure effects on the bioactivity of forsterite bioceramic",Materials letter, vo. 65 , pp. 740-743. 2011.
- F. Tavangarian, R. Emadi, "Improving degradation rate and apatite formation ability of nano structure forsterite", Ceram. Int, vol. 37 , pp. 2275–2280. 2011.
- H.W. Kim, J.C. Knowles, H.E. Kim, "Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release" Journal of materials science. Materials in medicine, vol. 16, pp. 189-195. 2005.
- H.W. Kim, J.C. Knowles, H.E. Kim, "Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery", Biomaterials, vol. 25 , pp. 1279-1287. 2004.
- م.مظفری،ن.جوهری،م.ح.فتحی،"داربست کامپوزیتی پلی کاپرولاکتون-هیدروکسی آپاتیت:بررسی تاثیر ذرات هیدروکسی آپاتیت و مقایسه ذرات با سایز نانومتری و میکرومتری و اثر آن ها برخواص مکانیکی و زیست تخریب پذیری داربست،"مجله مواد نوین،جلد5،شماره 20 ،ص 142-131تابستان1394.
- T. Tian, D. Jiang, J. Zhang, Q. Lin, "Fabrication of bioactive composite by developing PLLA onto the framework of sintered HA scaffold", Mater. Sci. Eng. C, vol. 28 , pp. 51-56. 2008.
- X. Miao,G. Lim,K.H. Loh,"Preparation and characterization of calcium phosphate bone cement", materials processing for properties and performance , vol. 3 ,pp. 319-324. 2004.
- H. Ghomi, M. Jaberzadeh, M.H. Fathi, "Novel fabrication of forsterite scaffold with improved mechanical properties", J. Alloy Compd, vol. 509 , pp. 63–68. 2011.
- S. Ni, L. Chou, J. Chang, "Preparation and characterization of forsterite (Mg2SiO4) bio ceramics", Ceram Int, vol.33, pp. 83–88. 2007.
- F. Tavangarian, R. Emadi, "Mechanical activation assisted synthesis of pure nano crystalline forsterite powder", J. Alloys Compd 485 (2009) pp. 648–652. 2009.
- F. Tavangarian, R. Emadi, "Effects of fluorine ion and mechanical activation on nanostructure forsterite formation mechanism", Powder Technol, vol. 203, pp. 180–186. 2010.
- A. Douy, "Aqueous synthesis of forsterite (Mg2SiO4) and enstatite (MgSiO3)", J. Sol–Gel Sci. Technol, vol. 24, pp. 221–228. 2002.
- M. Kharaziha, M.H. Fathi, "Synthesis and characterization of bioactive forsterite nanopowder", Ceramics International, vol. 35, pp. 2449-2454. 2009 .