اثر افزودن عامل کنترلکننده بر ریزساختار و خواص مغناطیسی آلیاژ جدید آمورف/نانوبلور پایه آهن تولیدشده بهروش آلیاژسازی مکانیکی
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نویناحسان بهادری یکتا 1 * , امیر حسین تقوایی 2 , شهریار شرفی 3
1 - دانشجوی دکترای رشته مهندسی مواد و متالورژی، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 - استادیار، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شیراز، شیراز، ایران
3 - استاد، دانشکده مهندسی مواد و متالورژی، دانشگاه شهید باهنر کرمان، کرمان، ایران
کلید واژه: آلیاژسازی مکانیکی, خواص مغناطیسی, آلیاژهای آمورف پایه آهن,
چکیده مقاله :
در سالهای اخیر، آلیاژهای آمورف پایه آهن به دلیل خواص مغناطیسی عالی درکنار هزینه نسبتاً پایین گسترش زیادی یافتهاند. در این تحقیق، تاثیر افزودن عاملکنترلکننده (PCA) بر میکروساختار و خواص مغناطیسی آلیاژ آمورف پایه آهن Fe75Ta5Si10C10 تولید شده به روش آلیاژسازی مکانیکی بررسی شد. نتایج حاصل از پراش پرتو ایکس نشان داد که تنها با افزودن 2% عامل کنترل کننده به آلیاژ فوق فاز آمورف تشکیل می شود، درحالیکه بدون افزودن عامل کنترل کننده هیچ هاله آمورفی مشاهده نشد. همچنین با افزایش زمان آسیاکاری تا مراحل پایانی (120 ساعت)، درصد وزنی فاز آمورف افزایش یافت و در نهایت به مقدار 94% رسید. تصویر میکروسکوپ الکترونی عبوری گرفته شده از نمونه 120 ساعت آسیاکاری شده تشکیل فاز آمورف را تائید کرد. نتایج نشان داد اندازه بلورک ها و کرنش شبکه پس از 50 ساعت آسیاکاری بهترتیب به10 نانومتر و 44/1% برای نمونه با PCA و 15 نانومتر و 37/1% برای نمونه بدون PCA رسید. تصاویر میکروسکوپ الکترونی روبشی ریزتر شدن ذرات پودر در اثر افزودن PCA را تائید کرد. با افزودن PCA بهدلیل وجود عناصر غیرمغناطیسی بیشتر، مقدار مغناطش اشباع کمتری نسبت به حالت بدون PCA به دست آمد. به علاوه، بهدلیل وجود ناهمسانگردی بلوری کم و تشکیل فاز آمورف در اثر افزودن PCA، میدان پسماندزدای مغناطیسی کمتری حاصل و در نتیجه خواص مغناطیسی نرم بهبود یافت. بنابراین نتایج کلی این پژوهش، بهبود قابلیت شیشهای شدن و خواص مغناطیسی نرم در اثر افزودن PCA میباشد.
Nowadays, Fe-based amorphous/nanocrystalline alloys have been greatly developed due to the excellent magnetic properties, as well as their relatively low cost. In this study, the effect of process control agent (PCA) addition on the microstructure and magnetic properties of Fe75Ta5Si10C10 alloy produced by mechanical alloying was investigated. The X-ray diffraction (XRD) results showed that the addition of 2 wt. % PCA notably increases the glass forming ability (GFA) in the present alloying system and the percentage of the amorphous phase eventually reaches a value of 94 wt.% after 120 h milling. The amorphization reaction upon addition of the PCA was further confirmed by the transmission electron microscopy (TEM) analyzes. The crystallite size and lattice strain after 50 h milling were calculated as 10 nm and 1.44% after PCA addition, and 15 nm and 1.37% before that, respectively. The scanning electron microscopy (SEM) results confirmed that the powder prepared with the PCA exhibits finer particles with a more spherical shape. Magnetic measurements demonstrated that that both saturation magnetization and coercivity decrease and the soft magnetic behavior is improved with the PCA addition. Therefore, overall results in this study contain improvement of glass forming ability and soft magnetic properties with the PCA addition.
References:
[1]. J. Xu, Y.Z. Yang, W. Li, Z.W. Xie, X.C. Chen, "Effect of the substitution of C for Si on microstructure , magnetic properties and bending ductility in high Fe content FeSiBCuPC alloy ribbons", Alloys & Compound. Vol. 727, pp. 610–615, (2017).
[2]. Mchenry.M.E., Johnson. F, Okumura. H, Ohkubo. T, "The kinetics of nanocrystallization and microstructural observations in FINEMET , NANOPERM and HITPERM nanocomposite magnetic materials", Scripta Materialia, Vol.48, pp. 881–887, (2003).
[3]. Makino. A, Men. H, Kubota. T, Yubuta. K, Inoue. A, "New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9 T and excellent magnetic softness", Applied Physics, Vol. 105, 07A308, pp.10–13, (2009).
[4]. Bitoh. T, Makino. A, Inoue. A, "Origin of low coercivity of Fe-(Al,
Ga)-(P, C, B, Si, Ge) bulk glassy alloys",
Material Transaction. Vol. 44, pp. 2020–2024, (2003).
[5]. Herzer. G, "Modern soft magnets:
Amorphous and nanocrystalline materials", Acta Material, Vol. 61, pp. 718–734, (2013). 80-85, (2016).
[5]. Herzer. G, "Modern soft magnets: Amorphous and nanocrystalline materials", Acta Material, Vol. 61, pp. 718–734, (2013).
[6]. Makino. A, Kubota. T, Makabe. M, Chang. C. T, Inoue. A, "FeSiBP metallic glasses with high glass-forming ability and excellent magnetic properties", Material Science and Engineering B Solid-State Material Advance Technology, Vol. 148, pp. 166–170 , (2008).
[7]. Neamţu. B .V, Chicinaş. H .F, Marinca. T. F, Isnard. O, Chicinaş. I, "Preparation and characterisation of Co–Fe-Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying", Alloys and Compounds, Vol. 673, pp.
[8]. Gheiratmand. T, Hosseini. H. R. M, Davami. P, Sara. C, "Fabrication of FINEMET bulk alloy from amorphous powders by spark plasma 80-85, sintering", Powder Technology, Vol. 289, pp. 163–168, (2016).
[9]. Seifoddini. A, Stoica. M, Nili-ahmadabadi. M , Heshmati-manesh. S, Uta. K, "New (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 glassy alloys with enhanced glass-forming ability and large compressive strain", Materials Science & Engineering A, Vol. 560, pp. 575–582, (2013).
[10]. Suryanarayana. C, "Mechanical alloying and milling", Progress in Material Science, pp. 1–184, (2001).
[11]. Yoshizawa. K.Y.Y, Oguma. S, "New Fe-based soft magnetic alloys composed of ultrafine grain structure", Applied Physics, Vol. 64 (10), pp. 6044–6046, (1988).
[12]. Suzuki. T . M .K, Makino. A, "soft mgnetic properties of bcc Fe-M-B-Cu (M = Ti, Nb or Ta) alloys with nanoscale grain size", Japanese Applied Physics, Vol. 30 (10A), (1991).
[13]. Willard. M . A, Laughlin. D . McHenry. M . E, "Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys", Applied Physics. Vol, 84 (12), pp. 6773–6777, (1998).
[14]. Taghvaei. A. H, Stoica. M , Khoshkhoo . M . S, Thomas. J, Vaughan. G, Janghorban. K, Eckert. J, "Microstructure and magnetic properties of amorphous/nanocrystalline Co40Fe22Ta8B30 alloy produced by mechanical alloying", Materials Chemistry and Physics, Vol. 134, pp. 1214–1224, (2012).
[15]. Zuo. M, Meng. S, Li. Q, Li. H, Chang. C, "Effect of metalloid elements on magnetic properties of Fe-based bulk metallic glasses", Intermetallics. Vol. 83, pp. 83–86, (2017).
[16]. Jiao. Z .B, Li. H. X, Gao. J . E, Wu. Y, Lu. Z. P, "Effects of alloying elements on glass formation , mechanical and soft-magnetic properties of Fe-based metallic glasses", Intermetallics, Vol. 19, pp. 1502–1508, (2011).
[17]. Taghvaei.A. H, Khoshrodi. A. K, "Characterization, thermodynamic analysis and magnetic investigation of new soft magnetic amorphous/nanocrystalline Co50Fe21Ti19Ta5B5 powders produced by mechanical alloying", Alloys and Compounds,Vol. 742, pp. 887-896, (2018).
[18]. Ogawa. H, Miura. H, "Compositional dependence of amorphization of M – C – Si ( M = Fe , Co or Ni ) materials by mechanical alloying", Materials Processing TechnologyVol. 144, pp. 256–260, (2003).
[19]. Mchenry. M. E, Willard. M. A, Laughlin. D. E, "Amorphous and nanocrystalline materials for applications as soft magnets", Progress in Materials Science, Vol. 44, pp. 291-433, (1999).
[20]. Yekta. E. B, Taghvaei. A. H, Sharafi. S, "Glass formation and magnetic study of new Fe70Ta5Si10C15 powders prepared by mechanical alloying with high thermal stability", Powder Technology. Vol. 322, pp. 241–249, (2017).
[21]. Takeuchi. A, Inoue. A, "Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element", Materials Transaction. Vol. 46, pp. 2817–2829, (2005).
[22]. Taghvaei. A. H, Stoica. M, Vaughan. G, Ghaffari. M, Maleksaeedi. S, Janghorban. K, "Microstructural characterization and amorphous phase formation in Co40Fe22Ta8B30 powders produced by mechanical alloying", Journal of Alloys and Compounds. Vol. 512, pp. 85–93, (2012).
[23]. Neamţu. B .V, Chicinaş. H .F, Marinca. T. F, Isnard. O, Chicinaş. I, "Amorphisation of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition", Materials Chemistry and Physics, Vol. 183, pp.83-92, (2017).
[24]. E. B. Yekta, A. H. Taghvaei, S. Sharafi, "The effect of metalloid content on glass forming ability, thermal stability and magnetic properties of Fe-Ta-Si-C powders prepared by mechanical alloying", Journal of Non-Crystalline Solids.
25- ا. بهادری یکتا، ا.ح. تقوایی و ش. شرفی، " اثر زمان آسیاکاری و بررسی تحلیل ترمودینامیکی بر تشکیل فاز آمورف در آلیاژ Fe-C-Ta تولید شده به روش آلیاژسازی مکانیکی،" نشریه مواد نوین، شماره 31، ص 122-10، 1397.
[26]. Dekhil. L, Alleg. S, Bououdina. M, Suñol. J. J, Grenèche. J. M, "Phase transformations and magnetic properties of ball-milled Fe-6P-1.7C powders", Advance Powder Technology. Vol. 26, pp. 519–526, (2015).
[27]. Sourmail. T, "Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties", Progress in Materials Science, Vol. 50, pp.816-880, (2005).
[28]. Amini. R, Hadianfard. M. J, Salahinejad. E, Marasi. M, Sritharan. T, "Microstructural phase evaluation of high-nitrogen Fe– Cr– Mn alloy powders synthesized by the mechanical alloying process", Material Science, Vol. 44, pp. 136–148, (2009).
[29]. Yelsukov. E. P, Dorofeev. G. A, Zagainov. A. V, Vildanova. N. F, "Initial stage of mechanical alloying in the Fe–C system", Material Science and Engineering A. Vol. 369, pp. 16–22, (2004).
[30]. Moumeni. H, Nemamch. A, Alleg. S, Grenèche. J. M, "Hyper fine interactions and structural features of Fe44Co6Mo (wt.%) nanostructured powders", Materials Chemistry and Physics, Vol. 138, pp. 209–214, (2013).
[31]. Yousefi. M, Sharafi. S, Mehrolhosseiny. A, "Correlation between structural parameters and magnetic properties of ball milled nano-crystalline Fe–Co–Si powders", Advance Powder Technology. Vol. 25, pp. 752–760, (2014).
[32]. Taghvaei. A. H, Ghajari. F, Marko. D, Prashtanth. K. G, "Influence of milling time on microstructure and magnetic properties of Fe80P11C9 alloy produced by mechanical alloying", Magnetism and Magnetic Material, Vol. 395, pp. 354-360, (2015).
[33]. Sharma. S, "Amorphous Phase Formation in Mechanically Alloyed Fe-based Systems", PhD Thesis, (2008).
[34]. Wang. Y, Zhang.Y, Takeuchi. A, Makino. A, Liang. A, Kawazoe. Y, "Magnetic influence of alloying elements in Fe-rich amorphous alloys studied by abinitio molecular dynamics simulations", IEEE Transaction on Magnetics. Vol. 51, pp. 1–4, (2015).
[35]. Marinca. T. F, Chicinas. I, Isnard. O, Popa. F, "Structural and magnetic characteristics of Co-based amorphous powders prepared by wet mechanical alloying", Advance Powder Technology, Vol. 26, pp. 323-328, (2014).
[36]. Gheisari. K, Shahriari. S, Javadpour. S, "Structural evolution and magnetic properties of nanocrystalline 50 Permalloy powders prepared by mechanical alloying", Journal of Alloys and Compounds. Vol. 574, pp. 71–82, (2013).
[37]. Nowroozi. M. A, Shokrollahi. H, "Magnetic and structural properties of amorphous/nanocrystalline Fe42Ni28Zr8Ta2B10C10 soft magnetic alloy produced by mechanical alloying", Advance Powder Technology, Vol. 24, pp. 1100–1108, (2013).
[38]. Zeng. Q, Baker. I, Mccreary. V, Yan. Z, "Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders", Journal of Magnetism and Magnetic Materials, Vol. 318, pp. 28–38, (2007).
[39]. Chen. C. W, "Magnetism and Metallurgy of Soft Magnetic Materials", North- Holland, Amsterdam, (1977).
[40]. Comstock. R. L, "Introduction to Magnetism and Magnetic Recording", Wiley, New York, (1999).
[41]. Herzer. G, Gmbh. V, Hanau. D, Germany. F. R, "Grain size dependence of coercivity and permeability", IEEE Xplore, Vol. 26, pp. 1397–1402, (1990).
[42]. Tavakoli. M, Shokrollahi. H, Karimi. L, Janghorban. K, "Investigation of structural, microstructural and magnetic properties of mechanically alloyed nanostructured (Fe50Co50)100−xMox(x=25,35) powders", Powder Technology. Vol. 234, pp. 13–18, (2013).
_||_