بهینه سازی تخریب فوتوکاتالیستی آلاینده دارویی سفالکسین از محلولهای آبی توسط نانو ساختارهای سنتزشده Zn-MOC با استفاده از روش سطح پاسخ
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینپیام حیاتی 1 , طاهره جعفری زاده 2 , حسن زارع نیریزی 3 , زهره مهرآبادی 4 , محمد حسین فرجام 5
1 - پارک علم و فناوری خلیج فارس ، شرکت نانو گستران نوابغ فردای دشتستان ، برازجان ، ایران
2 - گروه شیمی ، واحد فیروزآباد ، دانشگاه آزاد اسلامی ، فیروزآباد ، ایران
3 - گروه شیمی ، واحد فیروزآباد ، دانشگاه آزاد اسلامی ، فیروزآباد ، ایران
4 - گروه شیمی ،واحد فیروزآباد ، دانشگاه آزاد اسلامی ، فیروزآباد ، ایران
5 - گروه شیمی ، واحد فیروزآباد ، دانشگاه آزاد اسلامی ، فیروزآباد ، ایران
کلید واژه: فوتوکاتالیست, سفالکسین, روش سطح پاسخ, Zn-MOC, نانو ساختار,
چکیده مقاله :
چکیده
مقدمه: پساب های دارویی به دلیل اثراتی که بر سلامت انسان و محیط زیست دارند جزء خطرناک ترین پساب ها محسوب می شوند. هدف از تحقیق حاضر بررسی تخریب نوری آلاینده دارویی سفالکسین از محلولهای آبی با استفاده از نانوساختار فوتوکاتالیست سنتزی بود.
مواد و روش ها: در این تحقیق از یک ترکیب فلز–آلی جدید (Zn-MOC) که از لیگاند سنتزی مزوتتراکیس(4-سیانوفنیل) پورفیرین که به روش سونوشیمیایی (نانوساختار) سنتز شده است، جهت تخریب نوری آلاینده دارویی سفالکسین استفاده شد. کلیه پارامترهای موثر بر راندمان تخریب آلاینده که شامل pH، مدت زمان تابش دهی، مقدار فوتوکاتالیست، غلظت سفالکسین می باشد، با استفاده از روش طراحی مکعب مرکزی (CCD) که یکی از روش های سطح پاسخ (RSM) است مورد بررسی و بهینه سازی قرار گرفت.
یافتهها: نانوساختار فوتوکاتالیست سنتزی بر پایه روی (Zn-MOC) کارایی بسیار بالایی ( 20/94درصد) در تخریب داروی سفالکسین در مجاورت نور مرئی از خود نشان داد.
نتیجهگیری: فوتوکاتالیست سنتزی استفاده شده در این تحقیق کارایی بالا در زمان کوتاهتر را از خود نشان داد. همچنین مقادیر بهینه پارامتر مؤثر بر فرآیند فوتوتخریب نوری سفالکسین توسط Zn-MOC در شرایط 4=pH، مقدار فوتوکاتالیست 90/0 گرم بر لیتر ، زمان تابش دهی 45 دقیقه و غلظت آلاینده 80/4 میلی گرم بر لیتر مشاهده شد.
واژههای کلیدی:
سفالکسین ، روش سطح پاسخ ، Zn-MOC ، فوتوکاتالیست، نانو ساختار
Introduction: Medicinal sewages are considered as one of the most dangerous sewages due to their effects on human health and the environment. The aim of the present study was to investigate the photodegradation of cephalexin contaminants in aqueous solutions using synthetic photocatalyst nanostructure.
Materials and Methods: In this study, a new metal-organic compound (Zn-MOC) synthesized by the synthetic sonocyte (4-cyanophenyl) porphyrin synthetic ligand (nanostructure) was used to optically degrade cephalexin. All parameters affecting the degradation efficiency of pollutants, including pH, irradiation time, amount of photocatalyst, and cephalexin concentration, are investigated and optimized using the central cube design (CCD) method, which is one of the response surface methods (RSM).
Results: Zn-based synthetic photocatalyst nanostructure (Zn-MOC) showed very high efficiency (94.20%) in the degradation of cephalexin in the presence of visible light.
Conclusion: The synthetic photocatalyst used in this study showed high efficiency in a shorter time. Also, the optimal parameter values affecting the photodegradation process of cephalexin were observed by Zn-MOC at pH=4 the amount of photocatalyst was 0.90 g/l, the irradiation time was 45 minutes and the contaminant concentration was 4.80 mg /l.
1. Richardson ML. Bowron JM. The fate of pharmaceutical chemicals in the aquatic Environment. J. Pharm. Pharmacol. 1985; 37:1–12. [DOI: 10.1111/j.2042-7158.1985.tb04922.x]
2. Zhang Y. Wang L. Liu D. Gao Y. Song C. Shi Y. Qu D. Shi J. Morphology effect of honeycomb-like inverse opal for efficient photocatalytic water disinfection and photodegradation of organic pollutant. Mol. Catal. 2018; 444: 42–52. [DOI: 10.1016/j.mcat.2017.10.030]
3. Liu Q. Wang S. Zhang W. Zhan D. Li J. Does foreign direct investment affect environmental pollution in China's cities, a spatial econometric perspective. Sci. Total Environ.2018; 613-614: 521-529. [DOI: 10.1016/j.scitotenv.2017.09.110]
4. Noorhosseini SA. Allahyari MS. Damalas CA. S.S. Moghaddam SS. Public environmental awareness of water pollution from urban growth: The case of Zarjub and Goharrud rivers in Rasht. Iran, Sci. Total Environ. 2019; 599–600: 2019–2025. [DOI: 10.1016/j.scitotenv.2019.133595]
5. Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxico let. 2002; 131(1): 5- 17. [DOI: 10.1016/s0378-4274(02)00041-3]
6. Nazari G. Abolghasemi H. Esmaieli M. Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon. J Taiwan Inst Chem Eng. 2016; 58 :357-365. [DOI: 10.1016/j.jtice.2015.06.006]
7. Ajoudanian N. Nezamzadeh-Ejhieh A. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater Sci in Semiconduc Proc. 2015 ; 36: 162-169. [DOI: 10.1016/j.mssp.2015.03.042]
8. Estrada AL. Li Y-Y. Wang A. Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process. J. haz. mat. 2012; 227: 41-48. [DOI: 10.1016/j.jhazmat.2012.04.079]
9. Vilt ME. Ho WW. In situ removal of Cephalexin by supported liquid membrane with strip dispersion. J membr Sci. 2011; 367(1): 71-77 [DOI: 10.1016/j.memsci.2010.10.044]
10. Bhatnagar A. Kumar E. Sillanpää M. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chem Eng J. 2010; 163(3): 317-323. [DOI: 10.1016/j.cej.2010.08.008]
11. Nezamzadeh-Ejhieh A. Ajoudanian N. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Materials Science in Semiconductor Processing. 2015; 36: 162-169. [DOI: 10.1016/j.mssp.2015.03.042]
12. Ming-Sheng M. Qun L. Li S. Zhen w. Yu-Zhen L. Qiang K. Removal of cephalexin from effluent by activated carbon prepared from alligator weed: Kinetics, isotherms, and thermodynamic analyses. Process Safety and Environmental Protection. 2016; 104: 481-489. [DOI: 10.1016/j.psep.2016.03.017]
13. Seid-Mohammadi A. Bahram M. Omari S . Asadi F. Removal of Cephalexin From Aqueous Solutions Using Magnesium Oxide/Granular Activated Carbon Hybrid Photocatalytic Process. Avicenna J Environ Health Eng. 2019; 6(1): 51-59. [DOI: 10.15171/ajehe.2019.07]
14. Zhang WD. Hao R. Xiao X. Zuo X.X. Nan JM. Efficient adsorption and visi- ble light photocatalytic degradation of tetracycline hydrochloride using meso- porous BiOI microspheres. J. Hazard. Mater. 2012; 209-210: 137–145. [ DOI: 10. 1016/j.jhazmat.2012.01.006]
15. Derikvandi H. Nezamzadeh-Ejhieh A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of cou- pling, supporting, particles size and calcination temperature. J. Hazard. Mater. 2017; 321: 629–642. [ DOI:10.1016/j.jhazmat.2016.09.056 ]
16. Hayat K. Gondal M. Khaled MM. Ahmed S. Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol–gel method. J Molec Cata A: Chemical. 2011; 336(1): 64-71.[ DOI: 10.1016/j.molcata.2010.12.011]
17. Jafarizadeh T. Hayati P. Zare Neyrizi H . Mehrabadi Z. Farjam MH . Gutiérrez A. Adarshd N.N. Synthesis and structural characterization of a novel Zn(II) metal organic complex (Zn-MOC) and elimination of highly consumed antibiotic; tetracycline from aqueous solution by their nanostructures photocatalyst under visible light. Journal of Molecular Structure. 2021; 1228: 448-461 [DOI: 10.1016/j.molstruc.2020.129448]
18. قربانیان ب . معروفی ص. تجلی م. موسوی خوئی س م. توکلی ح. کاربرد روش سطح پاسخ در بهینه سازی ترکیب شیمیایی و سختی پوشش اکسید آلومینیمی ایجاد شده به روش پلاسمای الکترولیتی. مجله مواد نوین. سال 1398. جلد 9 ، شماره 4 . 69- 82
19. کوهستانی ح . تولید فتوکاتالیستی هیدروژن از پساب صنعتی حاوی آلایندههای آلی توسط نانوکامپوزیت TiO2/ZrO2. مجله مواد نوین. سال 1397. جلد 9 ، شماره 2 . 147- 153
20. Zuorro A. Fidaleo M. Lavecchi R. esponse surface methodology (RSM) analy-sis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process. J. Environ. Manage. 2013; 127: 28–35. [DOI: 10.1016/j.jenvman.2013.04.023]
21. Zhu X. Tian J. Liu R. Chen L. ptimization of Fenton and electro-Fenton oxida- tion of biologically treated coking wastewater using response surface method- ology. Sep. Purif. Technol. 2011; 81: 444–450.[ DOI: 10.1016/j.seppur.2011.08.023]
22. تدین سعیدی م . قربانیان ب . کاربرد روش سطح پاسخ در بهینه سازی ضخامت و سختی پوشش وانادیم کاربید ایجاد شده به روش پلاسمای الکترولیتی. مجله مواد نوین. سال 1398. جلد 9 ، شماره 2 . 111- 120
23. Abedi M. Mahmoudi G. Hayati P. achura B. Zubkov FI. Mohammadi K. Bahrami S. et al. A 3D heterometal- lic Ni(II)/K(I) MOF with a rare rna topology: synthesis, structural features, and photocatalytic dye degradation modeling, New J. Chem. 2019; 43: 17457–17465. [DOI: 10.1039/D0NJ02460K]
24. Yu C-H. Wu C-H. Ho T-H. Hong PA. Decolorization of CI Reactive Black 5 in UV/TiO 2, UV/oxidant and UV/TiO 2/oxidant systems: a comparative study. Chem Eng J. 2010; 158(3): 578-83.[ DOI: 10.1016/j.cej.2010.02.001]
25. Laohaprapanon S. Matahum J. Tayo L. You S-J. Photodegradation of reactive black 5 in a ZnO/UV slurry membrane reactor. J Taiw Ins of Chem Eng. 2015; 49: 136-141. [DOI: 10.1016/j.jtice.2014.11.017]
26. Tu Y. Xiong Y. Tian S. Kong L. Descorme C. Catalytic wet air oxidation of 2-chlorophenol over sewage sludgederived carbon-based catalysts. J haz mat. 2014; 276: 88-96. [DOI: 10.1016/j.jhazmat.2014.05.024]
_||_