Evaluation of Chitosan Films doped with Niosomal Sage Nanoparticles (NIS-Sag NPs) role in food packaging technology
Subject Areas : Journal of Nanoanalysismona__saad eldin__elneklawi mona__saad eldin__elneklawi 1 , Mirhan Darwish 2 , Ebtesam Mohamed 3
1 - Biomedical Equipment department, faculty of Applied Medical sciences, October 6 University, Giza, Egypt.
2 - Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
3 - Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
Keywords: Chitosan, Sage, Food packaging, Nanoparticles, Niosomes.,
Abstract :
Natural extracts have anti-bacterial power that supports their use in food applications. In this work, sage extract was encapsulated into niosomes nanoparticles. Then, chitosan films were doped with different concentrations (100, 200 and 300 μg) of NIS-Sag NPs. The characteristics of pure chitosan film and chitosan doped NIS-Sag NPs films were studied using Raman spectroscopy and UV/VIS spectrophotometer. Scanning electron microscope (SEM) was used to study the surface topography and morphology of the films. In addition, mechanical properties and antibiotic sensitivity test were investigated. The chemical properties of chitosan film doped with NIS-Sag NPs (100-300 μg) was enhanced compared to pure chitosan film which were confirmed by Raman spectroscopy in addition to the UV absorption measurements. SEM results showed that chitosan doped NIS-Sag NPs films has smooth and compacted surface recommended for further application such as food packaging. The doping process was found to enhance the mechanical properties of the films as it improved the tensile strength and elasticity significantly especially for concentration 300 μg. The antibiotic susceptibility test also confirmed this result. These observed improvements of chitosan film doped with 300 μg NIS-Sag NPs are potentially encouraging to adopt the results in food packaging technology.
[1] Ebtesam A. Mohamad, Ali WN, Desouky OS, El-Marakby SM, Elshemey WM. The validity of an x-ray scatter approach for the detection of olive oil adulteration. Ann Univ Dunarea Jos Galati Fascicle VI – Food Technol. 2019;43(1):128-136. doi:10.35219/foodtechnology.2019.1.10.
[2] Ebtesam A. Mohamad, Alyaa A. Elfky, Reem H. El-Gebaly, Amira Afify. Study the change in the mosquito larvae (Culex pipiens) in water treated with short pulses electric filed. Electromagnetic Biology and Medicine. 2022, 41(1), 80–92.
[3] E. a Mohammad, W. M. Elshemey, A. a Elsayed, and A. a Abd-Elghany, “Electroporation Parameters for Successful Transdermal Delivery of Insulin,” Am. J. Ther., 2016; 23(6): e1560–e1567.
[4] Ebtesam A. Mohamad, Naglaa Moussa Balabel, Control the activity of Erwinia amylovora bacterium by magnetic field, International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2020; 9(6): 2139-2142
[5] Monira M. Rageh, Marwa R. El-Garhy, Ebtesam A. Mohamad, Magnetic fields enhance the anti-tumor efficacy of low dose cisplatin and reduce the nephrotoxicity, Naunyn-Schmiedeberg's Archives of Pharmacology (NSAP), 2020; 393(8):1475-1485. doi: 10.1007/s00210-020-01855-9.
[6] Kohno M., Yamazaki M., Kimura I., Wada M., Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli, Pathophysiology 2000; 7: 143–148.
[7] Ahmed, A.F., Attia, F.A.K., Liu, Z., Li, C., Wei, J., Kang, W., Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci. Hum. Wellness. 2019; 8: 299–305. doi: 10.1016/J.FSHW. 2019.07.004.
[8] Akcan, T., Estévez, M., Serdarog˘lu, M., Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. Food Sci. Technol. 2017; 77: 323–331. doi: 10.1016/J.LWT. 2016.11.051.
[9] Aleksic Sabo, V., Knezevic, P.. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and es¬sential oils: a review. Ind. Crops Prod. 2019; 132: 413–429. doi: 10.1016/J.INDCROP.2019.02.051.
[10] Alizadeh Behbahani, B., Noshad, M., Falah, F.. Cumin essential oil: phytochemical analysis, antimicrobial ac¬tivity and investigation of its mechanism of action through scanning electron microscopy. Microb. Pathog. 2019; 136: 103716. doi: 10.1016/J.MICPATH. 2019.103716.
[11] Alizadeh-Sani, M., Rhim, J.-W., Azizi-Lalabadi, M., Hemmati-Dinarvand, M., Ehsani, A.,. Preparation and char¬acterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. Int. J. Biol. Mac¬romol. 2020; 145: 835–844. doi: 10.1016/J.IJBIOMAC.2019.11.004.
[12] Ranton B., Handbook of herbs and spices, CRC Press, 2004.
A. Vallverd´u-Queralt, J. Regueiro, M. Mart´ınez-Hu´elamo, J. F. Rinaldi Alvarenga, L. N. Leal and R. M. Lamuela-Raventos, Food Chem., 2014; 154: 299–307.
[13] R. I. Shobha, C. U. Rajeshwari and B. Andallu, in Cancer, ed. V. Preedy, Academic Press, San Diego, 2014; 91–100.
[14] Amr A. Abd-Elghany, Ebtesam A. Mohamad, Mohamed A. El-Sakhawy, Sofiene Mansouri, Sameh H. Ismail, Mona S. Elneklawi. Enhancement of mechanical properties of chitosan film by doping with sage extract-loaded niosomes. Materials Research Express. March 2022. DOI: 10.1088/2053-1591/ac600a
[15] S. Kamiloglu, E. Capanoglu, O. Yilmaz, A. F. Duran and D. Boyacioglu, Qual. Assur. Saf. Crops Foods, 2014; 6: 151-158.
[16] K. Srinivasan, Crit. Rev. Food Sci. Nutr., 2014; 54: 352–372.
[17] Parreidt, T.S.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018; 7: 170.
[18] Kalaycıo˘ glu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, ˙I.; Erim, F.B. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int. J. Biol. Macromol. 2017; 101; 882–888.
[19] Da Silva, A.B.; Rufato, K.B.; de Oliveira, A.C.; Souza, P.R.; da Silva, E.P.; Muniz, E.C.; Vilsinski, B.H.; Martins, A.F. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int. J. Biol. Macromol. 2020; 161: 977–998.
[20] Facchi, D.P.; da Cruz, J.A.; Bonafé, E.G.; Pereira, A.G.B.; Fajardo, A.R.; Venter, S.A.S.; Monteiro, J.P.; Muniz, E.C.; Martins, A.F. Polysaccharide-Based Materials Associated with or Coordinated to Gold Nanoparticles: Synthesis and Medical Application. Curr. Med. Chem. 2017; 24: 2701–2735.
[21] Martins, A.F.; Vlcek, J.; Wigmosta, T.; Hedayati, M.; Reynolds, M.M.; Popat, K.C.; Kipper, M.J. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer sca_olds with antiadhesive and bactericidal properties. Appl. Surface Sci. 2020; 502: 144282.
[22] Fu, J.; Ji, J.; Yuan,W.; Shen, J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005; 26: 6684–6692.
[23] Priyadarshi, R.; Sauraj; Kumar, B.; Negi, Y.S. Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydr. Polym. 2018; 195: 329–338.
[24] Ansorena, M.R.; Marcovich, N.E.; Pereda, M. Food Biopackaging Based on Chitosan. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; 2057–2083.
[25] Ramin, B.B.S.; Rufato, K.B.; Sabino, R.M.; Popat, K.C.; Kipper, M.J.; Martins, A.F.; Muniz, E.C. Chitosan/iota-carrageenan/curcumin-based materials performed by precipitating miscible solutions prepared in ionic liquid. J. Mol. Liq. 2019; 290: 111199.
[26] Mohamad EA, Mohamed ZN, Hussein MA, Elneklawi MS. GANE can Improve Lung Fibrosis by Reducing Inflammation via Promoting p38MAPK/TGF-β1/NF-κB Signaling Pathway Downregulation. ACS Omega. 2022; 7(3): 3109-3120. doi: 10.1021/acsomega.1c06591.
[27] Facchi, S.P.; de Oliveira, A.C.; Bezerra, E.O.T.; Vlcek, J.; Hedayati, M.; Reynolds, M.M.; Kipper, M.J.; Martins, A.F. Polycationic condensed tannin/polysaccharide-based polyelectrolyte multilayers prevent microbial adhesion and proliferation. Eur. Polym. J. 2020; 130: 109677.
[28] Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; d’Ayala, G.G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym. 2020; 233: 115839.
[29] Soni, B.; Mahmoud, B.; Chang, S.; El-Giar, E.M.; Hassan, E.B. Physicochemical, antimicrobial and antioxidant properties of chitosan/TEMPO biocomposite packaging films. Food Packag. Shelf Life 2018; 17: 73–79.
[30] R. Shemesh, D. Goldman, M. Krepker, Y. Danin-Poleg, Y. Kashi, A. Vaxman and E. Segal, J. Appl. Polym. Sci., 2015; 132: n/a-n/a.
[31] R. Efrati, M. Natan, A. Pelah, A. Haberer, E. Banin, A. Dotan and A. Ophir, J. Appl. Polym. Sci., 2014; 131: 40564.
[32] Beigzadeh Ghelejlu S, Esmaiili M, Almasi H Characterization of chitosan–nanoclay bionanocomposite active films containing milk thistle extract. Int J Biol Macromol. 2016; 86: 613–621.
[33] Carvalho HWP, Batista APL, Hammer P, et al. Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blue. Env Chem Lett 2010; 8: 343–348.
[34] Kopecek J and Yang J. Hydrogels as smart biomaterials. Polymer Int 2007; 56: 1078–1098.
[35] More SM, Kulkarni RV, Sa B, et al. Utaraldehyde-crosslinked poly(vinyl alcohol) hydrogel discs for the controlled release of antidiabetic drug. J Appl Poly Sci 2010; 116: 1732–1738.
[36] Zhang Y, Wang B, Lu F, Wang L, Ding Y, Kang X. Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021; 38(7): 1237-1248. doi: 10.1080/19440049.2021.1885745. Epub 2021 May 12. PMID: 33979271.
[37] Pateiro M, Munekata PES, Sant'Ana AS, Domínguez R, Rodríguez-Lázaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol. 2021; 337:108966. doi: 10.1016/j.ijfoodmicro.2020.108966. Epub 2020 Nov 10. PMID: 33202297.
[38] Ebtesam A. Mohamad, Monira M. Rageh, Mirhan Mostafa Darwish. “A sunscreen Nanoparticles Polymer Based on Prolonged Period of Protection” Journal of Bioactive and Compatible Polymers. 2022; 37(1): 17-27.
[39] Ebtesam A. Mohamad, Aya A. Aly, Aya A. Khalaf, Mona I. Ahmed, Reham M. Kamel, Sherouk M. Abdelnaby, Yasmine H. Abdelzaher, Marize G. Sedrak , Shaker A. Mousa. Evaluation of Natural Bioactive Derived Punicalagin Niosomes in skin aging processes accelerated by oxidant and Ultra-Violet Radiation, Drug Design Development And Therapy.2021; 15: 3151-3162.
[40] Heba M Fahmy; Amani M R Idris; Anwar A Elsayed; Ebtesam A Mohamad, Electroporation-enhanced entrapment of diclofenac sodium and ascorbic acid into DPPC liposomes, Research Journal of Biotechnology, 2021; 16 (11): 19-26.
[41] E. A. Mohamad and H. M. Fahmy, “Niosomes and liposomes as promising carriers for dermal delivery of Annona squamosa extract,” Brazilian Journal of Pharmaceutical Sciences, 2020; 56: e18096
[42] Amr A. Abd-Elghany, Ebtsam A. Mohamad. Antitumor impact of iron oxide nanoparticles in Ehrlich carcinoma-bearing mice. Journal of Radiation Research and Applied Sciences. 2021; 14(1): 314–321.
[43] Risaliti L. , Kehagia A. , Daoultzi E. , Lazari D. , Bergonzi M.C. , Vergkizi-Nikolakaki S. , Hadjipavlou-Litina D. , Bilia A.R. Liposomes loaded with Salvia triloba and Rosmarinus officinalis essential oils: in vitro assessment of antioxidant, antiinflammatory and antibacterial activities. J. Drug Delivery Sci. Technol., 2019; 51: 493-498.
[44] Amr A. Abd-Elghany, Ebtsam A. Mohammad. Ex-vivo Transdermal delivery of Annona Squamosa Entrapped in Niosomes by Electroporation. Journal of Radiation Research and Applied Sciences. 2020; 13(1): 164–173.
[45] Ali FM, Elgebaly RH, Elneklawi MS, Othman AS. Role of duty cycle on Pseudomonas aeruginosa growth inhibition mechanisms by positive electric pulses. Biomed Mater Eng. 2016; 27(2-3): 211-25. doi: 10.3233/BME-161577. PMID: 27567776.
[46] Nikolic, G. S., & Cakic, M. D. Physical investigation of the colloidal iron-inulin complex. Colloid Journal, 2007; 69(4): 464–473.
[47] W. M. Elshemey, I. a Mohammad, and A. a Elsayed, “Wide-angle X-ray scattering as a probe for insulin denaturation.,” Int. J. Biol. Macromol., 2010; 46(5): 471–7.
[48] Razavi, S. M., Cui, S. W., Guo, Q., & Ding, H. Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocolloids, 2014; 35: 453–462.
[49] B. Dou, V. Dupont, P. T. Williams, H. Chen and Y. Ding, Bioresour. Technol., 2009; 100: 2613–2620
[50] D. Altiok, E. Altiok and F. Tihminlioglu, J. Mater. Sci.: Mater. Med., 2010; 21: 2227–2236.
[51] S. Shojaee-Aliabadi, H. Hosseini, M. A. Mohammadifar, A. Mohammadi, M. Ghasemlou, S. M. Ojagh, S. M. Hosseini and R. Khaksar, Int. J. Biol. Macromol., 2013; 52: 116–124.
[52] Ma, Q., Du, L., Yang, Y., & Wang, L. Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocolloids, 2017; 63: 677-684.
[53] El Miri N, Abdelouahdi K, Barakat A et al. Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 2015; 129:156–167. https://doi.org/10.1016/j. carbpol.2015.04.051
[54] Coelho CCS, Cerqueira MA, Pereira RN et al. Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. Carbohydr Polym 2017; 174:1181–1191. https://doi.org/10.1016/j.carbpol.2017.07.007
[55] Basu A, Kundu S, Sana S et al. Edible nano-bio-composite film cargo device for food packaging applications. Food Packag Shelf Life 2017; 11: 98–105. https://doi.org/10.1016/j. fpsl.2017.01.011
[56] Ahmed J, Mulla M, Arfat YA, Thai TLA. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll. 2017; 71: 141–148. https://doi.org/10.1016/j.foodhyd.2017.05.013
[57] Liu T, Li J, Tang Q, Qiu P, Gou D, Zhao J. Chitosan-Based Materials: An Overview of Potential Applications in Food Packaging. Foods. 2022; 11(10): 1490. doi: 10.3390/foods11101490. PMID: 35627060; PMCID: PMC9141390.
[58] Khadija El Bourakadi, Mohamed El Mehdi Mekhzoum, Abou el kacem Qaiss, Rachid Bouhfid, Chapter 4 - Active biofilms for food packaging applications. Biopolymer-Based Nano Films, Elsevier, 2021; 65-84. ISBN 9780128233818, https://doi.org/10.1016/B978-0-12-823381-8.00016-8.
[59] Ruchir Priyadarshi, Jong-Whan Rhim, Chitosan-based biodegradable functional films for food packaging applications, Innovative Food Science & Emerging Technologies, 2020; 62: 102346. ISSN 1466-8564, https://doi.org/10.1016/j.ifset.2020.102346.
[60] Pradeepa Duraisamy, Aswani Ram Vinod, Keerthika S. and Dhana Rangesh Kumar V. “Extraction, characterization, antimicrobial activity of chitosan extracted from crab shell and preparation of chitosan-based bioplastic film for food packaging”. Journal of Advanced Scientific Research. 2022; 13 (01)