جداسازی و شناسایی جمعیتهای باکتریایی از آب و رسوب استخرهای پرورش ماهی کپور نقرهای
محورهای موضوعی : میکروب شناسی کاربردی
مهران آوخ کیسمی
1
*
,
علی محمد پور
2
,
محمد رهاننده
3
,
افشار ذوقی شلمانی
4
1 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران.
2 - بخش تحقیقات زیست محیطی، اداره کل محیط زیست استان گیلان، سازمان حفاظت محیط زیست کشور، رشت، ایران.
3 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران.
4 - بخش تحقیقات شیلات و آبزیان، مرکز تحقیقات و آموزش کشاورزي و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزي، رشت، ایران.
کلید واژه: آب, رسوبات, فلور باکتریایی, هیپوفیتالمیکتیس مولیتریکس, جداسازی. ,
چکیده مقاله :
در پرورش ماهی کپور نقرهای به دلیل روش تغذیهای پورهخواری، بیماریهای عفونی ناشی از باکتریها یکی از عوامل مهم تلفات است که به دنبال تغییر کیفیت آب پرورشی ایجاد میگردد. هدف از اين مطالعه جداسازی و شناسايي فلور باکتریایی آب و رسوب استخرهای پرورش ماهی کپور نقرهای منطقه سنگر رشت بود. چهار مزرعه دارای مولدین ماهی کپور نقرهای (هیپوفیتالمیکتیس مولیتریکس) با میانگین وزن 0/99 ± 5/76 کیلوگرم بهعنوان محلهای نمونهبرداري در نظر گرفته شد. جهت جداسازی و شناسایی فلور باکتریایی آب و رسوب، نمونههای تهیهشده بهصورت انفرادي برای كشت ميكروبي مقدماتي و تفريقي استفاده شدند. نمونههای رشدیافته پس از كشت مجدد، خالصسازي و بر اساس جدول آزمایشهای شيميايي به بررسی و مطالعه خواص آنها اقدام و تا حد گونه شناساييگردیدند. در بررسی متغیرهای فیزیکوشیمیایی آب مزارع نمونهبرداری شده و شمارش باکتریهای آب مکانهای نمونهبرداری مولدین اختلاف معنیداری مشاهده نگردید. بعد از جداسازی و تعیین صفات مورفولوژیکی و بیوشیمیایی باکتریهای جداسازی شده 11 جنس از آب و رسوب استخرهای پرورش شناسایی گردید که فراوانترین آنها جنسهای باسیلوس، آئروموناس و سودوموناس بودند. بر اساس نتایج این تحقیق، اختلاف تراکم باکتریهای گرم منفی و گرم مثبت جداسازی شده از نمونهها معنیدار نبود اگرچه تعداد زیادی از باکتریهای جداسازی شده در این تحقیق بیماریزا شناخته شدهاند، اما پاتوژن اولیه نبوده و در بدن آبزیان، در آب دریا، مصبها و محیطهای آب شیرین بهعنوان قسمتی از میکروفلورایطبیعی محسوب میشوند. البته در شرایط بروز استرس و تحلیل سیستم ایمنی بدن آبزیان میتوانند بیماریزایی نمایند.
In silver carp farming, infectious diseases caused by bacteria are one of the important causes of mortality that occurs following changes in the quality of the culture water. The aim of this study was to isolate and identify the bacterial flora of water and sediment in silver carp farming ponds in the Sangar of Rasht. Four farms with Hypophthalmichthys molitrix broodstocks (76.5 ±0.99 kg) were considered as sampling sites. In order to isolate and identify the bacterial flora of water and sediment, the samples prepared individually were used for preliminary and differential microbial culture. The grown samples were re-cultivated, purified and their properties were identified to the species level based. No significant differences were observed in the study of the physicochemical variables of the water and the bacterial count of the sampled farms. Totally 11 genera were identified from the water and sediment of the breeding ponds, the most abundant of which were the genera Bacillus, Aeromonas and Pseudomonas. According to the results of this study, the difference in the density of gram-negative and gram-positive bacteria isolated from the samples was not significant. Although a large number of bacteria isolated in this study are known to be pathogenic, they are not primary pathogens and are considered part of the natural microflora in the body of aquatic animals, in seawater, estuaries and freshwater environments. Of course, in conditions of stress and degradation of the immune system of aquatic animals, they can become pathogenic.
References
1. Cahill MM. Bacterial flora of fishes: A review. Microbial ecology. 1990; 19: 21–41.
2. Behera BK, Bera AK, Paria P, Das A, Parida PK. Identification and pathogenicity of Plesiomonas shigelloides in Silver Carp. Aquaculture. 2018; 493(1): 314-318.
3. Cecilia B, Daniela R, Mioara C. Research on bacterial disease in silver carp (Hypophthalmichthys molitrix Val.), farmed in pond. International Multidisciplinary Scientific GeoConference. 2018; 18 (6.2): 505- 515. DOI:10.5593/sgem2018/6.2/S25.067.
4. Wu S, Wang G. Angert ER, Wang W, Li W, Zou H. Composition, diversity and origin of the bacterial community in grass carp intestine. journals Actions. PLoS One. 2012; 7(2): e30440. DOI: 10.1371/journal.pone.0030440.
5. Anderson IG, Shmsudin MN, Nash G. A preliminary study on the aerobic heterophic bacterial flora in giant freshwater prawn, Macrobrachium rosenbergii, hatcheries in Malaysia. Aquaculture. 1989; 81: 213-223.
6. Ye L, Amberg J, Chapman D. Gaikowski M, Liu WT. Fish gut microbiota analysis differentiates physiology and behaviour of invasive Asian carp and indigenous American fish. The ISME Journal. 2014; 8: 541–551.
7. Tung Pang S, Ransangan J, Hatai K. Isolation, Identification and Preliminary Characterization of Candidate Probiotic Bacteria from the Intestine of Domesticated Goldfish (Carassius auratus). Journal of fisheries and environment. 2020; 44 ( 2 ): 39-52.
8. Yasemi M, Esmaili AM, Fiazi Z, Qaim Magaki S, Ali Nejad S. Florobacterial Determination of Rainbow Trout (Oncorhynchus mykiss) Spawners and Identification of Bacteria with Possible Probotic Properties, Journal of Animal Environment 2012; 4(2): 45- 50. (in Persian).
9. Robertson PAW, Dowd CO, Burrells C, Williams P, Austin B. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture. 2000; 185: 235–243.
10. Miyamoto GT. A Preliminary microbiological and water quality survey of two Hawaiian prawn (Macrobrachium rosenbergii) hatcheries. A Thesis of the Master of science. University of Hawai'i at Manoa ProQuest Dissertations & Theses. 1983; 70 p.
11. Colorni A. A study on the bacterial flora of giant prawn, Macrobrachium rosenbergii, larvae fed with Artemia salina nauplii. Aquaculture. 1985; 49: 1- 10.
12. Phatarpekar PV, Kenkre VD, Sreepada R, Desai U, Achuthankutty CT. Bacterial flora associated with larval rearing of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture. 2002; 203: 279-291.
13. Soltani M. Bacterial diseases of fish. The Veterinary Medicine Organization in cooperation with the Academic Jihad Publishing Institute of Tehran University. 1997; 454 p. (in Persian).
14.Kafilzadeh F, Mirzaei N, Kargar M. Isolation and identification of mercury-resistant bacteria from water and sediments of the Kur River. World of Microbes. 2008; 1(1), 43-49.
15. Berg F. Bacteria associated with early life stages of halibut, Hippoglossu L., inhibit growth of a pathogenic Vibrio Sp. Journal of fish Diseases. 1995; 18: 31-40.
16. Alsina M. Blanch. A set of key (Hypophthalmichthys molitrix) biochemical identification of environmental Vibrio sp. Journal of Applied Bacteriology, 1994; 76: 79-85.
17. Kolb SA, O'Loughlin EJ, Gsell TC. Characterization of phthalate-degrading bacteria from Asian carp microbiomes and riverine sediments. International Biodeterioration & Biodegradation. 2019; 143: 104727.
18. Keysami M A, Mohammadpour M, Saad CR. Probiotic activity of Bacillus subtilis in juvenile fresh water prawn, Macrobrachium rosenbergii (de Man) at different methods of administration to the feed. Journal of Aquaculture International. 2012; 20: 499-511.
19. Keysami MA, Saad CR, Daud HM, Sijam K, Alimon AR. Comparison probiotic ability of three putative bacteria in juvenile Macrobrachium rosenbergii based on in vitro bacteria growth characteristics. Malaysian journal of Animal Science. 2005; 11(1): 61-71.
20. Sokal RR, Rohlf FJ. The Principles and Practice of Statistics in Biological Research. Stony Brook University, W.H Freeman and company, New York. ISBN-13: 978-0-7167-8604-4. 1995; 915 p.
21. Li X, Yu Y, Feng W, Yan Q, Gong Y. Host species as a strong determinant of the intestinal microbiota of fish larvae. The Journal of Microbiology. 2012; 50(1): 29-37.
22. Banerjee S, Mukherjee A, Dutta D. Non-Starch Polysaccharide Degrading Gut Bacteria in Indian Major Carps and Exotic Carps. Jordan Journal of Biological Sciences (JJBS). 2016; 9 (1): 69-78.
23. Singh BI. Studies on the bacteria associated with Penaeus indicus in a cultre system. PHD Thesis, Cochin University of Science and Technology, Cochin, india. 1997; 230 p.
24. Basti AA, Zahrae Salehi T, Bokaie S. Some bacterial pathogens in the intestine of cultivated silver carp and common carp. Developments in Food Science. 2004; 42: 447-451.
25. Khan A, Mandal S, Samanta D, Chatterjee S. Phytase-producing Rhodococcus sp.(MTCC 9508) from fish gut: a preliminary study. Proceedings of the Zoological Society. 2011; 64(1): 29-34.
26. Hosseinzadeh M, Tokmehchi A. Isolation and identification of enterotoxin-producing Aeromonas hydrophila from Common carp (Cyprinus carpio), Journal of Animal Environment. 2015; 7 (4): 173-178. (in Persian).
27. Razavilar V, Khani MR, Motallebi AA. Bacteriological study of cultured silver carp (Hypophthalmichthys molitrix) in Gilan province, Iran. Iranian Journal of Fisheries Sciences. 2013; 12(3): 689- 701.
28. Ziyarti M, Avakh Keysami M, Kafilzadeh F.. Isolation and identification of microflora from rearing ponds and the digestive tract of western white shrimp (Litopenaeus vannamei) and their evaluation as probiotics. World of Microbes. 2012; 5(3-4 (13)): 122-131.
29. Al-Harbi AH, Uddin MN. Aerobic Bacterial Flora of Common Carp (Cyprinus carpio L.) Cultured in Earthen Ponds in Saudi Arabia. Journal of Applied Aquaculture, Taylor & Francis. 2008; 20 (2): 108-119.
30. Hagi T, Tanaka D, Iwamura Y, Hoshino T. Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish. Aquaculture. 2004; 234 (1-4) :335-346.
31. Sahul Hameed A. A study of the aerobic heterophic bacterial flora of hatchery-reared eggs, larvae and post – larvae of Penaeus indicus. Aquaculture. 1993; 117: 195–204.
32. Mandal S, Ghosh K. Isolation of tannase‐producing microbiota from the gastrointestinal tracts of some freshwater fish. Journal of Applied Ichthyology. 2013; 29: 145-153.
33. Talukdar S, Ringø E, Ghosh K. Extracellular tannase-producing bacteria detected in the digestive tracts of freshwater fishes (Actinopterygii: Cyprinidae and Cichlidae). Acta Ichthyologica Et Piscatoria. 2016; 46(3):201-210. DOI:10.3750/AIP2016.46.3.04.
34. Keysami MA, Zoughi Shalmani A, Zahmatkesh Kumleh A, Karimi A. Screening of bacterial flora isolated from the gastrointestinal tract of silver carp broodstocks (Hypophthalmichthys molitrix) as probiotics. Journal of Animal Environment. 2022; 14(1): 285-292.
35.Ghafarnejad Moghadam F, Shondi M, Haddadi A, Amozgar MA. The Effect of Altitude on the Diversity and Abundance of Bacterial Populations in Soil Samples from Qale Kazem Khan Mountain, Lake Urmia." Quarterly Journal of Microbial world. 2023; 4 (53) : 271-281. https://doi.org/10.30495/jmw.2022.1966410.2033.
36. Punom NJ. 16S rRNA sequence based identification of pathogenic gut microbiota of Rohu, (Labeo rohita, Hamilton-Buchanan 1822) and Silver carp (Hypophthalmichthys molitrix) repository. Dhaka University Journal of Biological Sciences. 2017: 25(2):169-184. DOI:10.3329/dujbs.v25i2.46340.
37. Ray AK, Ghosh K, Ringø E. Enzyme‐producing bacteria isolated from fish gut: a review. Aquaculture Nutrition. 2012; 5: 465-492. https://doi.org/10.1111/j.1365-2095.2012.00943.x.
38. Al-Harbi AH, Uddin MN. Aerobic Bacterial Flora of Common Carp (Cyprinus carpio L.) Cultured in Earthen Ponds in Saudi Arabia. Journal of Applied Aquaculture, Taylor & Francis. 2008; 20 (2): 108-11
39. Pękala-Safińska A. Contemporary threats of bacterial infections in freshwater fish. Journal of veterinary research. 2018; 62(3): 261–267.
40 Bairagi A, Ghosh KS, Sen SK, Ray AK. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International. 2002; 10: 109–121.
41. Luo C, Yi C, Ni L, Guo L. Characterization of dominant and cellulolytic bacterial communities along the gut of silver carp (Hypophthalmichthys molitrix) during cyanobacterial blooms. Chinese Journal of Oceanology and Limnology. 2017; 35: 624–633.
42. Lightner DV, Lewis DH. A septicemic bacterial disease syndrome of penaeid shrimp. Marine Fisheries Review. 1975; 37: 25-28.