اثر ضد باکتریایی نانو ذره نقره سنتز شده از جلبک قرمز گراسیلاریا گراسیلیس
محورهای موضوعی : زیست فناوری میکروبیسمیه عطائی جلیسه 1 , مریم زمانی کوچصفهانی 2 , محمد حسین زمانی کوچصفهانی 3
1 - استادیار، گروه زیست شناسی، واحد رشت ، دانشگاه آزاد اسلامی، رشت، ایران.
2 - گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران
3 - گروه زیست شناسی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
کلید واژه: XRD, نانو ذرات نقره, EDS, گراسیلاریا گراسیلیس,
چکیده مقاله :
نانوذرات به دلیل نسبت بالای سطح به حجم، قدرت نفوذ و اثر ضدمیکروبی بالایی دارند. این مطالعه با هدف سنتز زیستی نانوذرات نقره با عصاره جلبک قرمز گراسیلاریا گراسیلیس (Gracilaria gracilis) و بررسی فعالیت ضد باکتریایی آن انجام شد. ابتدا نانوذرات نقره سنتز گردید. برای تایید ساختار و اندازه نانوذرات نقره تولید شده از دستگاه پراش پرتو ایکس، میکروسکوپ الکترونی نگاره (FE-SEM) و دستگاه طیف سنجی پراکندگی انرژی پرتو ایکس (EDS) استفاده شد. بررسی اثرات ضد میکروبی نانو ذره با روش رقیق سازی متوالی صورت پذیرفت.اندازه نانو ذرات در زیر میکروسکوپ الکترونی بین 12 تا 46 نانومتر بود. نانوذرات توانستند اغلب باکتریهای استاندارد و مقاوم به آنتی بیوتیک مورد بررسی را مهار کنند. نانوذرات نقره در غلظت 29 میکروگرم بر میلی لیتر، بر روی باکتریهای استاندارد کلبسیلا نمونیه، اشریشیا کلی، سالمونلا تایفی موریوم و باکتریهای بالینی مقاوم کلبسیلا نمونیه و اشریشیا کلی بیشترین اثر مهاری را داشتند. در مقابل، جدایههایی استاندارد و بالینی استافیلوکوکوس اورئوس و استاندارد استرپتوکوکوس نمونیه نسبت به نانو ذرات نقره مقاوم بودند.
Silver nanoparticles (Ag-np) have high penetration and antimicrobial effect due to their high surface-to-volume ratio. The aim of this study was to biosynthesize silver nanoparticles with red algae extract, Gracilaria gracilis, and to investigate their antibacterial activity against a number of standard and drug-resistant pathogenic bacteria. First, Ag-np were synthesized. To confirm the structure and size of Ag-np, was used X-Ray diffraction spectroscopy, FE-SEM electron microscopy, and X-ray energy dispersive spectroscopy (EDS). The antimicrobial effects of algae extract on bacteria were determined by sequential dilution method. The size of nanoparticles under electron microscopy was between 12 and 46 nm. The nanoparticles were able to inhibit most of standard and antibiotic resistant bacteria, Ag-np at a concentration of 29 μg /ml, on the standard bacteria: S. typhimorium, E. coli, K. pneumonia and the clinically resistant bacteria, E. coli and K. pneumonia, they had the most inhibitory effect. In contrast, standard and clinically resistant isolates of S. aureus and standard strain S. pneumonia were resistant to Ag-np. The results of this research showed that the G. gracilis red algae as a bio-source that can be useful for green synthesis of silver nanoparticles at very low cost applications, these nanoparticles can be used as candidates for drug composition.
2. Bao H, Yu X, Xu C, Li X, Li Z, Wei D, Liu Y. New toxicity mechanism of silver nanoparticles:
promoting apoptosis and inhibiting proliferation. Plos one. 2015; 10(3):547-551.
3. Behdad R, Mirzaie A, Zare Karizi SH. Green synthesis of silver nanoparticle using Acroptilon
repens extract and evaluation of its anti-efflux activity against Acinetobacter bumanni clinical
isolates. JMW. 2017; 10(3): 211-220. (In persian)
4. Bhimba B V, Kumari P R. Phytosynthesis of silver nanoparticles from the extracts of seaweed
Ulva lactuca and its antimicrobial activity. Int J Pharm BioSci. 2014; 5: 666-677.
5. Bhimba B V, Gurung S S, Nandhini U. Marine fungus (Aspergillus oryzae) mediated
biosynthesis of silver nanoparticles. Int. J. ChemTech Res. 2015; 7: 68-72.
6. Bhuyar P, Rahim MHA, Sundararajiu S, Ramaraj R, Maniam GP, Govindan N. Synthesis of
silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards
pathogenic bacteria. Beni- Suef Univ J Basic App Sci. 2020; 9(3): 1-15.
7. De Aragao A, De Oliveira T, Quelemes P, Perfeito M, Araujo M, Santiago J, Cardoso V,
Quaresma P, De Souza de Almeida Leite J, DaSilva D. Arab J Chem. 2019; 12:4182-4188.
8. Dehghan Nayeri F, Mirhosseini M, Mafakheri S, Zarrabi MM. Antibacterial and antifungal
effects of silver nanoparticles synthesized by the aqueous extract of sesame (Sesamum
indicum L.).J. Cell. Mol. Res. 2018; 31(1):155-165.(In Persian)
9. Devi J S, Bhimba B V. Antimicrobial potential of silver nanoparticles synthesized using Ulva
recticulata. Asian J Pharm Clin Res. 2014; 7:82-85.
10. Forbes BA, Sahm DF, Weissfeld AS, Trevino EA. Methods for testing antimicrobial
effectiveness. In: Baron EJ, Peterson LR, Finegold SM, editors. Bailey and Scott's Diagnostic
Microbiology. 8th ed. St Louis: Mosby Co; 2013: 171-94.
11. Hajimehdipoor H, Khanavi M, Shekarchi M, Abedi Z, Pirali Hamedani M. Investigation of the
Best Method for Extraction of Phenolic Compounds from Echinaceae purpurea L. (Moench). J.
Med. Plants. 2009; 8 (32) :145-152. (In Persian)
12. Humberto H, Lara V, Humberto H, Lara V, Ayala-Nunez NV, Carmen LD, Ixtepan T, Cristina
RP. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J
Microbiol Biotechnol.2010; 26(4):615-621.
13. Ayala-Nunez NV, Carmen LD, Ixtepan T, Cristina RP. Bactericidal effect of silver
nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol.2010; 26
(4):615-621.
14. Kheybari S, Samadi N, Hosseini S, Fazeli A, and Fazeli M R. Synthesis and antimicrobial
effects of silver nanoparticles. DARU. 2010; 18(3):168-172.
15. Kumar p, Senthamil Selvi S, Govindaraju M. Seaweed-mediated biosynthesis of silver
nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl
Nanosci.2013; 3:495–500.
16. Lavakumar V, Masilamani K, Ravichandiran V, Venkateshan N, Saigopal DVR, Ashok
Kumar CK, Sowmya C. Promising upshot of silver nanoparticles primed from Gracilaria
crassa against b andacterial pathogens. Chem Cent J. 2015; 9(42):1-8.
17. Magudapathy P, Gangopadhyay P, Panigrahi B K, Nair K G M, Dhara S. Electrical transport
studies of Ag nanoclusters embedded in glass matrix. Physica B Condensed Matter. 2001;
299:142-146.
18. Medina-Ramirez T, Bashir S, Luo Z & Liu J L. Green synthesis and characterization of
polymer-stabilized silver nanoparticles. Colloids Surf B Biointerfaces. 2009; 73:185-191.
19. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles, Langmiur. 1996;
12:788-800.
20. National Nosocomial Infections Surveillance System. National Nosocomial Infections
Surveillance (NNIS) System Report, data summary from January 1992 through June 2004,
issued October 2004. Am J Infect Control 2004; 32:470-785.
21. Parveen SK, Lakshmi D. Biosynthesis of silver nanoparticles using red algae Amphiroa
fragilissima and its antibacterial potential against gram positive and gram negative bacteria. J
Curr Res Sci. 2016; 19:93-100.
22. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med. 2006; 119
(6):20-28.
23. Pourali P, Baseri Salehi M, Afsharnezhad S, Behravan J. Biological production and
assessment of the antibacterial activity of gold nanoaprticles. JMW.2013; 6(3):198-211.(In
persian)
24. Rahimi Z, Yousefzadi M, Noori A, Akbarzadeh A. Synthesis of silver nanoparticles usin
g three marine macro algea from the Persian gulf. JOC.2014; 5(19):71-78. (In persian)
25. Ramezani F, Kazemi B, Jebali A. Biosynthesis of silver nanoparticles by Leishmania sp.
NCMBJ. 2013; 3(9):107-111. (In persian)
26. Rice LB. Antimicrobial resistance in gram-positive bacteria. Am J Infect Control. 2006; 119
(6):62-70.
27. Sadeghi M, Assar S. An in vitro antimicrobial activity of ten Iranian-made toothpastes. Dent
Res J (ISfahan). 2009; 6(2):87-92.
28. Salari Z, Danafar F, Dabaghi S, Ataei SA. Sustainable synthesis of silver nanoparticles using
macroalgae Spirogyra varians and analysis of their antibacterial activity. J. Saudi Chem. Soc.
2014; 20:459-464.
29. Supraja N, Prasad TNVKV, Soundariya M, Babujanarthanam R. Synthesis, characterization
and dose dependent antimicrobial and anti-cancerous activity of phycogenic silver
nanoparticles against human hepatic carcinoma (HepG2) cell line. 2016; 3(4):425-440.
30. Suriya J, Bharathi RS, Sekar V, Rajasekaran R. Biosynthesis of silver nanoparticles and its
antibacterial activity using seaweed Urospora sp. Afr. J. Biotechnol. 2012; 11:12192-12198.
31. Tavafi H, Abdi-Ali A, Ghadam P, Gharavi S. Evaluation of thesynergistic effect of bacterial
recombinant alginate lyase and therapeutic antibiotics on the growth of planktonic
Pseudomonas aeruginosa. JMW. 2019; 12(2):160-171.
32. Taylor PL., Ussher AL, Burrell RE, Impact of heat on nanocrystalline silver dressings. Part I:
Chemical and biological properties. Biomaterials. 2005; 26(35):7221.
33. Venkatesan J, Kim S, Shim MS. Antimicrobial, Antioxidant, and Anticancer Activities of
Biosynthesized Silver Nanoparticles Using Marine Algae Ecklonia cava. Nanomaterials. 2016;
6(235):1-18.
34. YaghootiKhorasani MM AS, Rezahosseini O,Assar Sh. Comparison of inhibitory dilutions of
a thymol based mouthwash (ORION O) with chlorhexidine on Streptococus mutans and
Streptococcus sanguis. Dent Res J (Isfahan) 2011; 7(2):122-9.
35. Yousefzadi M, Rahimi Z, Ghafori V. The green synthesis, characterization and antimicrobial
activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen)
J. Agardh, Adv. Mater. Lett. 2014; 137:1–4.
36. Zhang XF, liu ZG,Wei shen W, Gurunathan S. SilverNanoparticles: Synthesis,
Characterization,Properties, Applications, and Therapeutic Approaches. Int J Mol Sci, 2016;
17(9):1-34.
_||_
2. Bao H, Yu X, Xu C, Li X, Li Z, Wei D, Liu Y. New toxicity mechanism of silver nanoparticles:
promoting apoptosis and inhibiting proliferation. Plos one. 2015; 10(3):547-551.
3. Behdad R, Mirzaie A, Zare Karizi SH. Green synthesis of silver nanoparticle using Acroptilon
repens extract and evaluation of its anti-efflux activity against Acinetobacter bumanni clinical
isolates. JMW. 2017; 10(3): 211-220. (In persian)
4. Bhimba B V, Kumari P R. Phytosynthesis of silver nanoparticles from the extracts of seaweed
Ulva lactuca and its antimicrobial activity. Int J Pharm BioSci. 2014; 5: 666-677.
5. Bhimba B V, Gurung S S, Nandhini U. Marine fungus (Aspergillus oryzae) mediated
biosynthesis of silver nanoparticles. Int. J. ChemTech Res. 2015; 7: 68-72.
6. Bhuyar P, Rahim MHA, Sundararajiu S, Ramaraj R, Maniam GP, Govindan N. Synthesis of
silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards
pathogenic bacteria. Beni- Suef Univ J Basic App Sci. 2020; 9(3): 1-15.
7. De Aragao A, De Oliveira T, Quelemes P, Perfeito M, Araujo M, Santiago J, Cardoso V,
Quaresma P, De Souza de Almeida Leite J, DaSilva D. Arab J Chem. 2019; 12:4182-4188.
8. Dehghan Nayeri F, Mirhosseini M, Mafakheri S, Zarrabi MM. Antibacterial and antifungal
effects of silver nanoparticles synthesized by the aqueous extract of sesame (Sesamum
indicum L.).J. Cell. Mol. Res. 2018; 31(1):155-165.(In Persian)
9. Devi J S, Bhimba B V. Antimicrobial potential of silver nanoparticles synthesized using Ulva
recticulata. Asian J Pharm Clin Res. 2014; 7:82-85.
10. Forbes BA, Sahm DF, Weissfeld AS, Trevino EA. Methods for testing antimicrobial
effectiveness. In: Baron EJ, Peterson LR, Finegold SM, editors. Bailey and Scott's Diagnostic
Microbiology. 8th ed. St Louis: Mosby Co; 2013: 171-94.
11. Hajimehdipoor H, Khanavi M, Shekarchi M, Abedi Z, Pirali Hamedani M. Investigation of the
Best Method for Extraction of Phenolic Compounds from Echinaceae purpurea L. (Moench). J.
Med. Plants. 2009; 8 (32) :145-152. (In Persian)
12. Humberto H, Lara V, Humberto H, Lara V, Ayala-Nunez NV, Carmen LD, Ixtepan T, Cristina
RP. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J
Microbiol Biotechnol.2010; 26(4):615-621.
13. Ayala-Nunez NV, Carmen LD, Ixtepan T, Cristina RP. Bactericidal effect of silver
nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol.2010; 26
(4):615-621.
14. Kheybari S, Samadi N, Hosseini S, Fazeli A, and Fazeli M R. Synthesis and antimicrobial
effects of silver nanoparticles. DARU. 2010; 18(3):168-172.
15. Kumar p, Senthamil Selvi S, Govindaraju M. Seaweed-mediated biosynthesis of silver
nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl
Nanosci.2013; 3:495–500.
16. Lavakumar V, Masilamani K, Ravichandiran V, Venkateshan N, Saigopal DVR, Ashok
Kumar CK, Sowmya C. Promising upshot of silver nanoparticles primed from Gracilaria
crassa against b andacterial pathogens. Chem Cent J. 2015; 9(42):1-8.
17. Magudapathy P, Gangopadhyay P, Panigrahi B K, Nair K G M, Dhara S. Electrical transport
studies of Ag nanoclusters embedded in glass matrix. Physica B Condensed Matter. 2001;
299:142-146.
18. Medina-Ramirez T, Bashir S, Luo Z & Liu J L. Green synthesis and characterization of
polymer-stabilized silver nanoparticles. Colloids Surf B Biointerfaces. 2009; 73:185-191.
19. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles, Langmiur. 1996;
12:788-800.
20. National Nosocomial Infections Surveillance System. National Nosocomial Infections
Surveillance (NNIS) System Report, data summary from January 1992 through June 2004,
issued October 2004. Am J Infect Control 2004; 32:470-785.
21. Parveen SK, Lakshmi D. Biosynthesis of silver nanoparticles using red algae Amphiroa
fragilissima and its antibacterial potential against gram positive and gram negative bacteria. J
Curr Res Sci. 2016; 19:93-100.
22. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med. 2006; 119
(6):20-28.
23. Pourali P, Baseri Salehi M, Afsharnezhad S, Behravan J. Biological production and
assessment of the antibacterial activity of gold nanoaprticles. JMW.2013; 6(3):198-211.(In
persian)
24. Rahimi Z, Yousefzadi M, Noori A, Akbarzadeh A. Synthesis of silver nanoparticles usin
g three marine macro algea from the Persian gulf. JOC.2014; 5(19):71-78. (In persian)
25. Ramezani F, Kazemi B, Jebali A. Biosynthesis of silver nanoparticles by Leishmania sp.
NCMBJ. 2013; 3(9):107-111. (In persian)
26. Rice LB. Antimicrobial resistance in gram-positive bacteria. Am J Infect Control. 2006; 119
(6):62-70.
27. Sadeghi M, Assar S. An in vitro antimicrobial activity of ten Iranian-made toothpastes. Dent
Res J (ISfahan). 2009; 6(2):87-92.
28. Salari Z, Danafar F, Dabaghi S, Ataei SA. Sustainable synthesis of silver nanoparticles using
macroalgae Spirogyra varians and analysis of their antibacterial activity. J. Saudi Chem. Soc.
2014; 20:459-464.
29. Supraja N, Prasad TNVKV, Soundariya M, Babujanarthanam R. Synthesis, characterization
and dose dependent antimicrobial and anti-cancerous activity of phycogenic silver
nanoparticles against human hepatic carcinoma (HepG2) cell line. 2016; 3(4):425-440.
30. Suriya J, Bharathi RS, Sekar V, Rajasekaran R. Biosynthesis of silver nanoparticles and its
antibacterial activity using seaweed Urospora sp. Afr. J. Biotechnol. 2012; 11:12192-12198.
31. Tavafi H, Abdi-Ali A, Ghadam P, Gharavi S. Evaluation of thesynergistic effect of bacterial
recombinant alginate lyase and therapeutic antibiotics on the growth of planktonic
Pseudomonas aeruginosa. JMW. 2019; 12(2):160-171.
32. Taylor PL., Ussher AL, Burrell RE, Impact of heat on nanocrystalline silver dressings. Part I:
Chemical and biological properties. Biomaterials. 2005; 26(35):7221.
33. Venkatesan J, Kim S, Shim MS. Antimicrobial, Antioxidant, and Anticancer Activities of
Biosynthesized Silver Nanoparticles Using Marine Algae Ecklonia cava. Nanomaterials. 2016;
6(235):1-18.
34. YaghootiKhorasani MM AS, Rezahosseini O,Assar Sh. Comparison of inhibitory dilutions of
a thymol based mouthwash (ORION O) with chlorhexidine on Streptococus mutans and
Streptococcus sanguis. Dent Res J (Isfahan) 2011; 7(2):122-9.
35. Yousefzadi M, Rahimi Z, Ghafori V. The green synthesis, characterization and antimicrobial
activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen)
J. Agardh, Adv. Mater. Lett. 2014; 137:1–4.
36. Zhang XF, liu ZG,Wei shen W, Gurunathan S. SilverNanoparticles: Synthesis,
Characterization,Properties, Applications, and Therapeutic Approaches. Int J Mol Sci, 2016;
17(9):1-34.