بررسی رشد میکروجلبک سبز Chlorella vulgarisتحت شرایط میکسوتروف و اتوتروف به منظور تولید بیودیزل
محورهای موضوعی : بیولوژی دریافرانک سلطان محمدی 1 , شیلا صفاییان 2 *
1 - گروه بیولوژی دریا، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال
2 - گروه بیولوژی دریا، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال
کلید واژه: بیودیزل, میکروجلبک, کلرلا ولگاریس, میکسوتروف, اتوتروف,
چکیده مقاله :
روغن به دست امده از میکروجلبک ها به این دلیل که می توانند به راحتی به اسید های چرب متیل استر یا هیدروکربن های بیودیزل تبدیل شوند یکی از منابع مهم انرژی به شمار می آیند . هدف از این تحقیق بررسی روند رشد میکروجلبک سبز کلرلا ولگاریس در شرایط آزمایشگاهی میکسوتروف و اتوتروف به منظور یافتن شرایط بهینه در تولید بیودیزیل می باشد. جهت بررسی و مقایسه روند رشد سلولی کلرلا ولگاریس مقایسه از محیط های TMRL (AG) و TX در چهار تیمار و سه تکرار طی ده کشت روز استفاده شد . درهر تیمار ، شمارش کلرلا ولگاریس هر دو روز یکبار و در مجموع 5 بار شمارش انجام شد. نتایج نشان داد در دهمین روز شمارش سلولی میکروجلبک کلرلا میانگین رشد سلولی (تعداد سلول در میلی لیتر) میکروجلبک کلرلا در محیط های کشت مختلف نشان از بیشترین رشد سلولی106×1/118 (تعداد سلول در میلی لیتر) در محیط کشتTMRL(AG) در شرایط اتوتروف و 106×3/115 در شرایط میکسوتروف، کمترین تعداد سلولی نیز در محیط کشت TX شرایط میکسوتروف به میزان 106 ×4/77 (تعداد سلول در میلی لیتر) به ثبت رسید. دهمین روز شمارش رشد سلولی بین محیط های کشت مختلف اختلاف معنی دار بوده است ( P<0/05 ). همچنین محاسبه نرخ رشد و ضریب رشد ویژه نشان دهنده رشد سریع تر میکروجلبک کلرلا در محیط کشت TMRL(AG) نسبت به محیط کشت TX بوده است. میزان درصد روغن درمحیط کشتTMRL(AG) در شرایط میکسوتروف و اتوتروف به ترتیب، 22/4 و 21/1 بوده است. با توجه به نتایج بدست آمده جهت تولید انبوه میکرو جلبک کلرلا و استفاده آن در صنعت بیودیزل محیط کشت TMRL(AG) در شرایط میکسوتروف بدلیل رشد سلولی زیاد، روغن بالاتر و هزینه پایین تر توصیه می گردد.
Oil extracted from microalgae, is a potential energy source, as it can be easily converted to fatty acid methyl ester or hydrocarbon type biodiesel. The aim of the present work was to optimize the production of biodiesel by Chlorella vulgaris in mixotrophic and autotrophic cultivated conditions. Comparison of cell growth rate of Chlorella vulgaris was carried out, in TMRL(AG) and TX batch culture media, in four treatments and three repeats for ten days. In each treatment, Chlorella vulgaris was counted every two days once. Based on the results of this survey, the highest cell growth, 118×106 cell/ml, was recorded in autotrophic condition in TMRL(AG) medium and lowest count number was 77× 106 cells/ml in TX medium, in mixotrophic condition. There was significant difference between different media and average density of microalgae Chlorella vulgaris cell growth in ten days (p≤0.05). In this study, growth rate and growth coefficient showed more rapid growth of Chlorella in TMRL medium compared with TX medium. Oil content in TMRL (AG) media in mixotrophic and autotrophic cultivation conditions were %4.22 and %1.21, respectively. Our results revealed, for large scale culture of microalgae Chlorella, in order to be used in industrial biodiesel production, TMRL(AG) medium showed higher cell growth rate, greater amount of oil production and lower overall cost, in mixotrophic condition.
گنجیان، ع. 1389. دوره آموزشی و کارگاه کشت جلبک. گروه پژوهشی شیلات و آلایندههای آبی خزر. ایران.
گنجیان، ع.، شکوری، م.، قاسم نژاد، م.، گنجیان خناری، ف. و فارابی، و. 1391. بررسی تأثیر بیکربنات سدیم بر رشد میکروجلبک کلرلا (Chlorella sp.) در محیط کشت TMRL. مجله توسعه آبزی پروری، (6) 2:57-75.
Abreu, A., P, Fernandes, B., Vicente, A. A., Teixeira, J. & Dragone, G. 2012. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source, Bioresource Technology, 118:61–66.
Becker, E. W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge University Press. UK.
Dunahay, T., Jarvis, E., Dais, S. & Roessler, P. 1996. Manipulation of microalgal lipid production using genetic engineering. Applied Biochemistry and Biotechnology, 58(1):223-231.
Hsieh, C. H. & Wu, W. T. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100:3921-3926.
Kapdan, I. & Kargi, F. 2006. Bio-hydrogenproduction from waste materials. Enzyme and microbial Technology, 38(5):569-582.
Weibao, K., Song, H., Cao,Y., Yang, H., Hua, S. & Xia, C. 2011.The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation,African Journal of Biotechnology, 10(55):11620-11630.
Liang,Y., Sarkanay, N. & Cui,Y. 2009.Biomass and lipid productivity of Chlorella vulgaris under autotrophic, hetrotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7): 1043-1049.
Makarevičienė, V, Andrulevičiūtė, V., Skorupskaitė,V. & Kasperovičienė, J. 2011. Cultivation of Microalgae Chlorella sp. and Scenedesmus sp. as a Potentional Biofuel Feedstock. Environmental Research, Engineering and Management, 3 (57):21-27.
Moon, M., Kim, C. W., Park, W. K., Yoo, G., Choi, Y. E. & Yang, J. W. 2013. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Research, 2(4):352–357.
Meher, L. C., Vidya Sagar, D. & Naik, S. N. 2006. Technical aspects of biodiesel production by transesterification--a review, Renewable and Sustainable Energy Reviews, 10(3): 248-268.
Ngangkham, M., Sachitra, K., Ratha, R., Prasanna, A. K. S., Dolly, W. D., Chandragiri, S. & Rachapudi, B. N. P. 2012. Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. Springer Plus, 1:33.
Sawayama, S., Inoue, S., Dote, Y. & Yokoyamas, Y. 2010. Co2 fixation and oil production through microalgal. Energy conservation and management, 36: 729-731.
Priyadarshani, I. & Rath, B. 2012. Commercial and industrial applications of micro algae. Journal of Algal Biomass Utilization, 3(4): 89–100.
Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert. A. 2006.Commercial application of microalgae.Journal of bioscince and bioengineering,101 (2):87-96.
Wawrik, B. &. Harriman, B.H. 2010. Rapid colorimetric quantification of lipid from algal culture. Journal Microbial Method, 80 (3): 262-266.