کاربست رویکرد سندلوسکی و باروسو در سیستم حمل و نقل هوشمند و تاثیر آن در توسعه اجتماعی با لحاظ بحران انرژی
محورهای موضوعی : مطالعات توسعه اجتماعی ایرانسیدمحمد غریبیان لواسانی 1 , محمدعلی کرامتی 2 * , حسین معین زاد 3 , آزاده مهرانی 4
1 - گروه مدیریت فناوری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه مدیریت صنعتی،واحد تهران مرکزی ،دانشگاه آزاد اسلامی ،تهران ، ایران
3 - گروه مدیریت مالی ، واحدنوشهر، دانشگاه آزاد اسلامی ، نوشهر ، ایران
4 - گروه مدیریت مالی، واحد نوشهر، دانشگاه آزاد اسلامی، نوشهر، ایران.
کلید واژه: حمل و نقل هوشمند, بحران انرژی, توسعه اجتماعی.,
چکیده مقاله :
امروزه حمل و نقل و آثار و پیامدهای آن علاوه بر حوزه های کالبدی و زیست محیطی، در حوزه های اجتماعی و فرهنگی مسأله ساز بوده، به طوری که این موضوع در کلان شهرهای کشورهای در حال توسعه از ابعاد پیچیده تری نیز برخوردار است. صنعت حمل و نقل هوشمند نیز طی دوران مختلف، با فراز و فرودهایی همراه بوده و هدف اصلی آن، تلاش برای رسیدن به جایگاهی مطلوب و فردایی بهتر بوده است. با توجه به موقعیت منطقهای و جغرافیایی، ایجاد سیستم حمل و نقل کارآمد در توسعه اجتماعی، جایگاه و نقش ویژهای دارد. بخش حمل و نقل تاثیر بسزایی در فعالیتهای ، اقتصادی و فرهنگی و اساس توسعه اجتماعی هر کشور است. حمل و نقل از شاخصهای مهم توسعه یافتگی محسوب شده و نقش مهمی در توسعه اجتماعی دارد.
در این زمینه پژوهش حاضر به دنبال کاربست رویکرد سندلوسکی و باروسو در سیستم حمل و نقل هوشمند و تاثیر آن در توسعه اجتماعی با لحاظ بحران انرژی بوده است. در این چشمانداز، این تحقیق بر روی آنچه در حملونقل به دلیل ظهور فناوری و پذیرش گسترده رویکرد هوشمندی روی میدهد تمرکز کرده است. محقق با بهکارگیری رویکرد مرور نظاممند و فراترکیب، به تحلیل نتایج و یافتههای محققین قبلی دستزده و با انجام گامهای 7 گانه روش ساندلوسکی و باروسو، به شناسایی عوامل مؤثر پرداخته است. از بین 580 مقاله، 79 مقاله بر اساس روش CASP انتخاب شد. در این زمینه بهمنظور سنجش پایایی و کنترل کیفیت، از روش رونوشت استفاده گردید که مقدار آن برای شاخصهای شناساییشده در سطح توافق عالی شناسایی شد. نتایج حاصل از تحلیل دادههای گرداوری شده در نرمافزار ATLAS TI منتج به شناسایی 8 مقوله و 51 کد اولیه مؤثر بر سیستم حمل و نقل هوشمند با لحاظ بحران انرژی و توسعه اجتماعی گردید. بر اساس کدگذاری انجامشده، 8 مقوله و 51 کد اولیه شناسایی شدند. مقولههای شناساییشده عبارتاند از: مدیریت شبکه الکترونیکی، مدیریت مسیر، عوامل زیستمحیطی، شفافیت قوانین، مدیریت اعتماد، زیرساختهای فنی، استانداردسازی اطلاعات و پیش بینی شرایط روزانه حمل و نقل. براساس نتایج به دست آمده به طور کلی، سیستم حمل و نقل هوشمند با استفاده از استانداردهای اطلاعات و پیشبینی شرایط روزانه حمل و نقل، یک راهکار ارزشمند برای مدیریت بهینه منابع، افزایش کارایی، و حفظ محیط زیست است. این سیستمات باعث ایجاد یک سازوکار هماهنگ و هوشمند برای حمل و نقل شهری و بینشهری میشود که در جهت بهبود کیفیت زندگی افراد، افزایش امنیت، و کاهش اثرات منفی حمل و نقل بر محیط زیست بسیار موثر میباشد.
Today, transportation and its effects and consequences, in addition to physical and environmental areas, are problematic in social and cultural areas, so that this issue has more complex dimensions in the metropolises of developing countries. The intelligent transportation industry has been accompanied by ups and downs during different eras and its main goal has been to try to reach a favorable position and a better tomorrow. Considering the regional and geographical location, creating an efficient transportation system has a special place and role in social development. The transportation sector has a significant impact on economic and cultural activities and the basis of social development of any country. Transportation is one of the important indicators of development and plays an important role in social development. In this context, the current research has sought to apply the approach of Sandelowski and Barroso in the intelligent transportation system and its impact on social development in terms of the energy crisis. In this perspective, this research focuses on what is happening in transportation due to the emergence of technology and the widespread adoption of an intelligent approach. Using a systematic review approach, the researcher analyzed the results and findings of previous researchers and identified the effective factors by performing the 7 steps of the Sandelovski and Barroso method. Among 580 articles, 79 articles were selected based on the CASP method. In this context, in order to measure reliability and quality control, the transcription method was used, and its value was identified for the indicators identified at the level of excellent agreement. The results of the data analysis collected in the ATLAS TI software led to the identification of 8 categories and 51 primary codes effective on the intelligent transportation system in terms of energy crisis and social development. Based on the done coding, 8 categories and 51 initial codes were identified. The identified categories are: electronic network management, route management, environmental factors, rule transparency, trust management, technical infrastructure, information standardization and forecasting of daily transportation conditions. Based on the results obtained in general, the intelligent transportation system using information standards and predicting daily transportation conditions is a valuable solution for optimal management of resources, increasing efficiency, and preserving the environment. These systems create a coordinated and intelligent mechanism for urban and intercity transportation, which is very effective in improving people's quality of life, increasing security, and reducing the negative effects of transportation on the environment.
ابریشمی مقدم، رامین و جعفری، محمدرضا، (1397). داده بزرگ در سامانههای حمل و نقل، کنفرانس بین المللی عمران، معماری و مدیریت توسعه شهری در ایران، تهران
احمدی, توحید, فنی, زهره, رضویان, محمدتقی, توکلی نیا, جمیله. (1399). مدل ترکیبی اولویت بندی استراتژیهای حمل و نقل هوشمند مورد پژوهی: کلانشهر تبریز. نشریه علمی جغرافیا و برنامه ریزی, 23(67), 25-44.
احمدی، توحید و تیموری، راضیه و اغنایی، فاطمه، (1398). راهبردهای توسعه حمل و نقل پایدار کلانشهرها با تاکید بر حمل و نقل هوشمند، کنفرانس عمران، معماری و شهرسازی کشورهای جهان اسلام، تبریز،
امین طهماسبی، حمزه. قربانی، ابوذر. (1400). بررسی موانع همکاری صنعت و دانشگاه در توسعه سیستمهای حملونقل هوشمند محورهای موضوعی: عمومى. فصلنامه نوآوری و ارزش آفرینی، 3، 105-120.
زوربخش، مجتبی و بساط انداز، قاسم، (1397). نقش سامانههای حمل و نقل هوشمند در پایداری شهرها، کنفرانس عمران، معماری و شهرسازی کشورهای جهان اسلام، تبریز،
ستاک، مصطفی، عزیزی، وحید. کریمی، حسین. (1393). مسأله مکانیابی مسیریابی چنددپویی ظرفیتدار با برداشت و تحویل همزمان و بارهای برشیافته: مدلسازی و حل ابتکاری. نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، 2(4): 67-81
سیاهی، فرزین، (1394). نقش سیستمهای حمل و نقل هوشمند (ITS) در مدیریت حمل و نقل کلان شهرها، اولین همایش بین المللی ایدههای نو در معماری و شهرسازی، اردبیل.
فتاحی، پرویز. معصومی، ملیحه؛ بهنامیان، جواد. (1396). ارائه یک الگوریتم ترکیبی برای حل مسئله مکانیابی- مسیریابی -چندکالایی با در نظر گرفتن سیستمهای فرا بارانداز در زنجیره تأمین. مطالعات مدیریت صنعتی، 46 (15): 97-134
قنبرپور, غنچه, افضلی, کوروش, براری, معصومه. (1401). سنجش مدل ترکیبی استراتژیهای حمل و نقل هوشمند در شهرهای میانه ایران. مطالعات محیط انسان ساخت, 1(1), 273-298.
نجفی لاریجانی, سپهر, فاضل, سید سعید. (1397). مدیریت هوشمند انرژی در سیستم حمل و نقل برقی. فصلنامه مهندسی حمل و نقل, 10(1), 137-150.
Aamir, M., Masroor, S., Ali, Z.A., Ting, B.T. (2019). Sustainable framework for smart transportation system: a case study of karachi. Wirel. Pers. Commun. 106(1), 27–40.
Agarwal, V., Sharma, S., Agarwal, P. (2021). IoT based smart transport management and vehicle-to-vehicle communication system. In: Computer Networks, Big Data and IoT, pp. 709–716. Springer, Singapore
Aiman, S. Dileep Kumar, Y. Sudeep, V. Manoj, K.Sneha, M. (2022). Implementation of smart intelligent transportation system using deep learning. Journal of East China University of Science and Technology, 65(3), 211–222.
Akbari, Milad, Morris Brenna, and Michela Longo. "Optimal locating of electric vehicle charging stations by application of genetic algorithm." Sustainability 10.4 (2018): 1076.
Ali, Q. E., Ahmad, N., Malik, A. H., Ali, G., & Ur Rehman, W. (2018). Issues, challenges, and research opportunities in intelligent transport system for security and privacy. Applied Sciences, 8(10), 1964
Anwar, A.H.M.M., Oakil, A.T. (2024). Smart Transportation Systems in Smart Cities: Practices, Challenges, and Opportunities for Saudi Cities. In: Belaïd, F., Arora, A. (eds) Smart Cities. Studies in Energy, Resource and Environmental Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-35664-3_17
Arias, A. Sanchez, J. & Granada, M. (2018). Integrated planning of electric vehicles routing and charging stations location considering transportation networks and power distribution systems. International Journal of Industrial Engineering Computations, 9(4), 535-550.
Arkin, E. M. Carmi, P. Katz, M. J. Mitchell, J. S. & Segal, M. (2019). Locating battery charging stations to facilitate almost shortest paths. Discrete Applied Mathematics, 254, 10-16.
Arthurs, P.; Gillam, L.; Krause, P.; Wang, N.; Halder, K.; Mouzakitis, A. (2021). A taxonomy and survey of edge cloud computing for intelligent transportation systems and connected vehicles. IEEE Trans. Intell. Transp. Syst. 23, 6206–6221
Aujla, G.S., Jindal, A., Kumar, N. (2018). electric vehicle-as-a-service for energy trading in SDN-enabled smart transportation system. Comput. Netw. 143, 247–262.
Bozkaya, E. (2019). Energy management model for intelligent transportation system. Journal of naval sciences and engineering, journal of naval sciences and engineering, 159-172.
Campelo, P. Neves-Moreira, F. Amorim, P. & Almada-Lobo, B. (2019). Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector. European Journal of Operational Research, 273(1), 131-145.
Cao, Y., Ahmad, N., Kaiwartya, O., Puturs, G., Khalid, M. (2018). Intelligent transportation systems enabled ICT framework for electric vehicle charging in smart city. In: Handbook of Smart Cities, pp. 311–330. Springer, Cham.
Chao, C. Zhihui, T. & Baozhen, Y. (2019). Optimization of two-stage location–routing–inventory problem with time-windows in food distribution network. Annals of Operations Research, 273(1-2), 111-134.
Davoodi, M. (2019). k-Balanced Center Location problem: A new multi-objective facility location problem. Computers & Operations Research, 105, 68-84.
Dogra, A.K.; Kaur, J. (2022). Moving towards smart transportation with machine learning and Internet of Things (IoT): A review. J. Smart Environ. Green Comput. 2, 3–18
Dukkanci, O. Kara, B. Y. & Bektaş, T. (2019). The green location-routing problem. Computers & Operations Research, 105, 187-202.
Ejaz, W., Naeem, M., Sharma, S. K., Khattak, A. M., Ramzan, M. R., Ali, A., Anpalagan, A. (2020). IoV-based deployment and scheduling of charging infrastructure in intelligent transportation systems. IEEE Sensors Journal, 21(14), 15504–15514.
Fantin Irudaya Raj, E., Appadurai, M. (2022). Internet of Things-Based Smart Transportation System for Smart Cities. In: Mukherjee, S., Muppalaneni, N.B., Bhattacharya, S., Pradhan, A.K. (eds) Intelligent Systems for Social Good. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-19-0770-8_4
Fazayeli, S. Eydi, A. & Kamalabadi, I. N. (2018). Location-routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm. Computers & Industrial Engineering, 119, 233-246.
Ferrer, J.R. (2017). Barcelona’s smart city vision: an opportunity for transformation. Field Actions Sci. Rep. J. Field Actions (Special Issue 16), 70–75.
Galea, S., Seychell, D., & Bugeja, M. (2020). A survey of intelligent transportation systems based modern object detectors under night-time conditions. In 2020 3rd International conference on intelligent sustainable systems, 2020, 265–270
Gao, Y. Ren, T. Zhao, X. Li, W. (2021). Sustainable Energy Management in Intelligent Transportation. Journal of Interconnection Networks, 22. 4.
Garg, T., & Kaur, G. (2022). A Systematic Review on Intelligent Transport Systems. Journal of Computational and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE2202245
Ghane, M. & Tavakkoli-Moghaddam, R. (2018). A stochastic optimization approach to a location-allocation problem of organ transplant centers. Journal of Optimization in Industrial Engineering, 11(1), 103-111.
Ghosh, R., Pragathi, R., Ullas, S.,&Borra, S. (2017). Intelligent transportation systems: A survey. In 2017 International Conference on Circuits, Controls, and Communications, 2017, 160–165
Haghshenas S, Guido G, Vitale A and Ghoushchi S. (2022). Quantitative and Qualitative Analysis of Internet of Things (IoT) in Smart Cities and its Applications 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, 6. (1-6).
Hajson F(2023) What is the role of globalization; theoretical reflection on the nature and direction of the global song;" in: Strategic Studies Quarterly; Tehran: Strategic Studies Institute
Haque, A.B.; Bhushan, B.; Dhiman, G. (2022). Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Syst. 39, e12753.
Hendalianpour, A. Fakhrabadi, M. Zhang, X. Feylizadeh, M. R. Gheisari, M. Liu, P. & Ashktorab, N. (2019). Hybrid model of ivfrn-bwm and robust goal programming in agile and flexible supply chain, a case study: automobile industry. IEEE Access, 7, 71481-71492.
Henderson, M., (2016). Financing Renewable Energy, in: Morrison, R. (Ed.), The Principles of Project Finance. Routledge, New York, pp. 163–182.
Hong, J. Lee, M. Cheong, T. & Lee, H. C. (2019). Routing for an on-demand logistics service. Transportation Research Part C: Emerging Technologies.
Hu, H. Li, X. Zhang, Y. Shang, C. & Zhang, S. (2019). Multi-objective location-routing model for hazardous material logistics with traffic restriction constraint in inter-city roads. Computers & Industrial Engineering, 128, 861-876.
Iftikhar S, Gill S, Song C, Xu M, Aslanpour M, Toosi A, Du J, Wu H, Ghosh S, Chowdhury D, Golec M, Kumar M, Abdelmoniem A, Cuadrado F, Varghese B, Rana O, Dustdar S and Uhlig S. (2023). AI-based fog and edge computing: A systematic review, taxonomy and future directions. Internet of Things. 10.1016/j.iot.2022.100674. 21. (100674). Online publication
Jan, B., Farman, H., Khan, M., Talha, M., Din, I.U. (2019). Designing a smart transportation system: an internet of things and big data approach. IEEE Wirel. Commun. 26(4), 73–79
Javed, M. A., Hamida, E. B., Al-Fuqaha, A., & Bhargava, B. (2018). Adaptive security for intelligent transport system applications. IEEE Intelligent Transportation Systems Magazine, 10(2), 110–120
Jin, M., Zhang, Q., Wang, H., & Yuan, Y. (2020). Research on intelligent transportation system based on internet of things. International Journal of Heavy Vehicle Systems, 27(3), 247–257a
Karakatič, S. & Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot vehicle routing problem. Applied Soft Computing, 27, 519-532.
Khan, N. A. (2017). Real time predictive monitoring system for urban transport. PhD thesis, Kingston University Mathematics, 118(18), 3591–3604
Lam, Albert Y. S., Bogusław Łazarz, and Grzegorz Peruń. (2022). "Smart Energy and Intelligent Transportation Systems" Energies 15, no. 8: 2900. https://doi.org/10.3390/en15082900
Lamssaggad, A., Benamar, N., Hafid, A. S., & Msahli, M. (2021). A survey on the current security landscape of intelligent transportation systems. IEEE Access, 9, 9180–9208
Levina,A. I.,Dubgorn,A.S.,&Iliashenko,O.Y. (2017). Internetof things within the service architecture of intelligent transport systems. In 2017 European Conference on Electrical Engineering and Computer Science, 2017, 351–355.
Lin, C. Deng, D. Kuo, C. Liang, Y. (2018). Optimal Charging Control of Energy Storage and Electric Vehicle of an Individual in the Internet of Energy with Energy Trading. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 1-8.
Low, R.; Tekler, Z.D.; Cheah, L. (2020). Predicting commercial vehicle parking duration using generative adversarial multiple imputation networks. Transp. Res. Rec. 2674, 820–831
Lu, M.-T.; Lu, H.-P.; Chen, C.-S. (2022). Exploring the Key Priority Development Projects of Smart Transportation for Sustainability: Using Kano Model. Sustainability, 14, 9319
Luo, Y., Xiang, Y., Cao, K., Li, K. (2016). A dynamic automated lane change maneuver based on vehicle-to-vehicle communication. Transp. Res. Part C Emerg. Technol. 62, 87–102.
Lv, Z. Shang, W. (2023). Impacts of intelligent transportation systems on energy conservation and emission reduction of transport systems: A comprehensive review. Green Technologies and Sustainability, 1
Nariman(2023)Globalization and Social Development. In Proceedings of the Conference on Policy and Management of Growth and Development Plans in Iran. Volume
Maharjan, R. & Hanaoka, S. (2018). A multi-actor multi-objective optimization approach for locating temporary logistics hubs during disaster response. Journal of Humanitarian Logistics and Supply Chain Management, 8(1), 2-21.
Mahmoudabadi, A. (2015). Developing a chaotic pattern of dynamic risk definition for solving hazardous material routing-locating problem. Journal of Loss Prevention in the Process Industries, 37, 1-10.
Mahmoudabadi, A. Farokhi, R. & Fattahi, A. A. (2016). Developing a Tolerated Risk Model for Solving Routing-Locating Problem in Hazardous Material Management. Journal of Intelligent Transportation and Urban Planning, 4(1), 53-61.
Mao, T., Mihăită, A. S., Chen, F., & Vu, H. L. (2021). Boosted genetic algorithm using machine learning for traffic control optimization. IEEE Transactions on Intelligent Transportation Systems, 23(7), 7112–7141.
Mohri, S. S. Akbarzadeh, M. & Matin, S. H. S. (2019). A Hybrid model for locating new emergency facilities to improve the coverage of the road crashes. Socio-Economic Planning Sciences.
Murad, D. F., & Hidayanto, A. N. (2018). IoT for development of smart public transportation system: A systematic literature review. International Journal of Pure and Applied
Neto E, Dadkhah S and Ghorbani A. (2022). Sustainable and Secure Optimization of Load Distribution in Edge Computing 2022 IEEE 19th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). 10.1109/HONET56683.2022.10019191. 978-1-6654-6197-9. (040-045).
Oladimeji, Damilola, Khushi Gupta, Nuri Alperen Kose, Kubra Gundogan, Linqiang Ge, and Fan Liang. (2023). "Smart Transportation: An Overview of Technologies and Applications" Sensors 23, no. 8: 3880. https://doi.org/10.3390/s23083880
Poullikkas, A. (2015). Sustainable options for electric vehicle technologies. Renew. Sustain. Energy Rev. 41, 1277–1287
Raj, E.F.I., Appadurai, M. (2021). The hybrid electric vehicle (HEV)—An overview. Emerging Solutions for e-Mobility and Smart Grids, pp. 25–36.
Raj, E.F.I., Balaji, M. (2021). Analysis and classification of faults in switched reluctance motors using deep learning neural networks. Arab. J. Sci. Eng. 46(2), 1313–1332.
Rashidi, E. Parsafard, M. Medal, H. & Li, X. (2016). Optimal traffic calming: A mixed-integer bi-level programming model for locating sidewalks and crosswalks in a multimodal transportation network to maximize pedestrians’ safety and network usability. Transportation research part E: logistics and transportation review, 91, 33-50.
Sabouhi, F. Heydari, M. & Bozorgi-Amiri, A. (2016). Multi-objective routing and scheduling for relief distribution with split delivery in post-disaster response. Journal of Industrial and Systems Engineering, 9(3), 17-27.
Sabouhi, F. Tavakoli, Z. S. Bozorgi-Amiri, A. & Sheu, J. B. (2018). A robust possibilistic programming multi-objective model for locating transfer points and shelters in disaster relief. Transportmetrica A: Transport Science, 1-28.
Saharan, S., Kumar, N., Bawa, S. (2020). An efficient smart parking pricing system for smart city environment: a machine-learning based approach. Futur. Gener. Comput. Syst. 106, 622–640.
Saymon E(2023) Micro and Micro Look into Social Development. In the Proceedings of the Conference on Social Development. Elmi and Farhangi Publications
Schinkel, W., van der Sande, T., Nijmeijer, H. (2021). State estimation for cooperative lateral vehicle following using vehicle-to-vehicle communication. Electronics 10(6), 651.
Sharma, H., Talyan, S. (2021). IoT based smart car parking system for smart cities. In: Recent Trends in Communication and Electronics, pp. 372–374. CRC Press
Sharma, M. J. Moon, I. & Bae, H. (2008). Analytic hierarchy process to assess and optimize distribution network. Applied Mathematics and Computation, 202(1), 256-265.
Shobha, B. S., & Deepu, R. (2018). A review on video based vehicle detection, recognition and tracking. In 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions, 2018, 183–186
Song, J. He, G. Wang, J. Zhang, P. (2022). Shaping future low-carbon energy and transportation systems: Digital technologies and applications. Sciopen, 1, 1-16.
Tekler, Z.D.; Low, R.; Yuen, C.; Blessing, L. (2022). Plug-Mate: An IoT-based occupancy-driven plug load management system in smart buildings. Build. Environ. 223, 109472
Tientrakool, P., Ho, Y.C., Maxemchuk, N.F. (2011). Highway capacity benefits from using vehicle-to-vehicle communication and sensors for collision avoidance. In: 2011 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5.
Tyagi, A.K.; Aswathy, S. (2021). Autonomous Intelligent Vehicles (AIV): Research statements, open issues, challenges and road for future. Int. J. Intell. Netw. 2, 83–102
Umer, T. Rehmani, M. Kamal, A. Mihayova, L. (2019). Information and resource management systems for Internet of Things: Energy management, communication protocols and future applications, Future Generation Computer Systems, 92: 1021–1027
Zaheer, T., Malik, A. W., Ur Rahman, A., Zahir, A., & Fraz, M. M. (2019). A vehicular network–based intelligent transport system for smart cities. International Journal of Distributed Sensor Networks, 15(11), 155014771988884
Zhang, L. (2019). Traffic congestion reduction and smart city strategy-a case study in Shenzhen, China. Master’s thesis, University of Twente
Zhuang, D.; Gan, V.J.; Tekler, Z.D.; Chong, A.; Tian, S.; Shi, X. (2023). Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning. Appl. Energy 338, 120936