ارائه روشی سیستماتیک برای تحلیل حساسیت سیستمهای تحملپذیر خطا در معماری افزونگی چند ماجولی
محورهای موضوعی : انرژی های تجدیدپذیرکوروش اصلان صفت 1 * , غلامرضا لطیف شبگاهی 2
1 - دانشگاه شهید بهشتی، تهران
2 - دانشگاه شهید بهشتی، تهران
کلید واژه: حساسیت, درخت عیب, افزونگی, معماری NMR,
چکیده مقاله :
درخت عیب یک دیاگرام سلسله مراتبی است که راههای مختلف ترکیب اجزای معیوب یک سیستم را که منجر به وقوع عیب نامطلوب مشخص در آن میشوند به تصویر میکشد. این دیاگرام در فازهای طراحی و بهرهبرداری سیستمهای صنعتی به کار رفته و به طراحان امکان ارزیابی ویژگیهایی نظیر قابلیت اطمینان، میانگین زمان تا خرابی و حساسیت را عرضه میکند. علاوه بر موارد مذکور از درخت عیب برای پیدا کردن گلوگاههای خرابی و تعیین نقاط ضعف طراحی استفاده میکنند. علیرغم کاربردهای وسیع آن در ارزیابی قابلیت اطمینان سیستمها، از درخت عیب کمتر برای محاسبه حساسیت استفاده شده است. در دهه اخیر تحقیقات محدودی در این زمینه صورت گرفته است، اما این روشها برای سیستمهای بزرگ کارایی نداشته و نظاممند نیستند. مقاله حاضر به ارائه روشی سیستماتیک برای ارزیابی حساسیت سیستمهای تحملپذیر خطا از روی درخت عیب آن میپردازد. سپس روش فوق را برای محاسبه حساسیت معماری NMR که یکی از ساختارهای متعارف تحملپذیریخطا که جهت افزایش قابلیت اطمینان، ایمنی و دردسترسپذیری سیستم ها در صنعت است، به کار گرفته و به ارائه فرمولی جامع و پارامتری برای محاسبه حساسیت این ساختار میپردازد. روش ارائه شده میتواند کمک شایانی به مهندسان طراح و بهرهبردار سیستمهای مطمئن برای محاسبه سیستماتیک و سریع حساسیت از روی درخت عیب آنها بنماید
A fault tree illustrates the ways through which a system fails. It states different ways in which combination of faulty components result in an undesired event in the system. Being used in phases such as designing and exploiting industrial systems, and the designers able to evaluate the dependability attributes such as reliability, MTTF and sensitivity. In addition, in the mentioned ability, the fault tree is a systematic method for finding systems bottlenecks and weakness point. In spite of its extensive use in evaluating the reliability of systems, fault tree is rarely used in calculating sensitivity. In the last decade, few researches has been conducted in this field, however these methods are not applicable to large scale systems and are not systematic. This paper provides a systematic method for evaluating system sensitivity through fault tree. Then, it introduces sensitivity of NMR architecture as one of the common structures of fault tolerance which is used for enhancing systems’ reliability, safety and availability in industry. This article presents a comprehensive and parameterized formula for NMR structure's sensitivity. The presented method can be a great help for designing and exploiting reliable systems engineers in systematic and instant calculation of sensitivity by means of fault tree.
[1] J. Dugan, S.J. Bavuso, M. Boyd, "Fault trees and sequence dependencies", In Annual Reliability and Maintainability Symposium, Los Angeles, 1990.
[2] D. Raiteri, G. Franceschinis, M. Iacono, V. Vittorini, "Repairable fault tree for the automatic evaluation of repair policies", Proceeding of the IEEE/DSN, pp. 659-668, Florence, Italy, July 2004.
[3] P. Crouzen, "Compositional analysis of dynamic fault trees using input/output interactive markov chains", MSc. Thesis at University of Twente, Enschede, Netherlands, 2006.
[4] Y A. Mahmood, A. Ahmadi, A.K. Verma, A. Srividya, U. Kumar, "Fuzzy fault tree analysis: A review of concept and application", International Journal of System Assurance Engineering and Management, Vol. 4, No. 1, pp. 19-32, 2013.
[5] P. László, "Sensitivity investigation of fault tree analysis with matrix-algebraic method", Theory and Applications of Mathematics & Computer Science, Vol. 1, No. 1, pp. 35-44, 2011.
[6] D.M. Hamby, "A review of techniques for parameter sensitivity analysis of environmental models", Environmental Monitoring and Assessment, Vol. 32, No. 2, pp. 135-154, 1994.
[7] P.M. Frank, M. Eslami, "Introduction to system sensitivity theory", IEEE Trans. on Systems, Man and Cybernetics, Vol. 10, No. 6, pp. 337 - 338, 1980.
[8] G. Latif-Shabgahi, J.M. Bass, S. Bennett, "A taxonomy for software voting algorithms used in safety-critical systems", IEEE Trans. on Reliability, Vol. 53, No. 3, pp. 319 - 328, 2004.
[9] Y. Yeh, "Triple-triple redundant 777 primary flight computer", Proceeding of the IEEE/AERO, Vol. 1, pp. 293-307, Aspen, CO, 1996.
[10] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, S. Pezzini, " Fault-tolerant platforms for automotive safety-critical applications", In International Conference on Compilers, Architecture and Synthesis for Embedded Systems, New York, 2003.
[11] R.M. Daoud, H.H. Amer, H.M. ElSayed, "Performance and reliability of fault-tolerant ethernet networked control systems", In Factory Automation, Shanghai, China, InTech, pp. 265-288. 2010.
[12] A.J. Sørensen, "Marine control systems", Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway, 2011.
[13] B. Cai, Y. Liu, Z. Liu, X. Tian, H. Li, C. Ren, "Reliability analysis of subsea blowout preventer control systems subjected to multiple error shocks", Journal of Loss Prevention in the Process Industries, Vol. 25, No. 6, p. 1044–1054, 2012.
[14] E.L. Hannan, "A markov sensitivity model for examining the impact of cost allocations in hospitals", Journal of the Operational Research Society, Vol. 35, No. 2, pp. 117-129, 1984.
[15] R.L. Iman, "A matrix‐based approach to uncertainty and sensitivity analysis for fault trees1", Risk Analysis, Vol. 7, No. 1, pp. 21-33, 1987.
[16] C. Cassandras, S. Strickland, "On-line sensitivity analysis of markov chains", IEEE Trans. on Automatic Control, Vol. 34, No. 1, pp. 76 - 86, 1989.
[17] A.V. Ramesh, T. Kishor, "On the sensitivity of transient solutions of markov models", ACM SIGMETRICS Performance Evaluation Review, Vol. 21, No. 1, pp. 122-134, 1993.
[18] G. Levitin, L.A., "Importance and sensitivity analysis of multi-state systems using the universal generating function method", Reliability Engineering & System Safety, Vol. 65, No. 3, pp. 271-282, 1999.
[19] Y. Ou, J.B. Dugan, "Sensitivity analysis of modular dynamic fault trees", Proceeding of the IEEE/IPDS, pp. 35-43, Chicago, IL, 2000.
[20] R. Kieckhafer, M. Azadmanesh, Y. Hui, "On the sensitivity of NMR unreliability to non-exponential repair distributions", Proceeding of the IEEE/HASE, pp. 293-300, Albuquerque, NM, Nov. 2000.
[21] Y. Dutuit, A. Rauzy, "Efficient algorithms to assess component and gate importance in fault tree analysis", Reliability Engineering & System Safety, Vol. 72, No. 2, pp. 213-222, 2001.
[22] L. Xing, J.B. Dugan, "Analysis of generalized phased-mission system reliability, performance, and sensitivity", IEEE Trans. on Reliability, Vol. 51, No. 2, pp. 199-211, 2002.
[23] Y. Ou, J.B. Dugan, "Approximate sensitivity analysis for acyclic markov reliability models", IEEE Trans. on Reliability, Vol. 52, No. 2, pp. 220-230, 2003.
[24] H.K. Lo, C.Y. Huang, Y.R. Chang, W.C. Huang, J.R. Chang, "Reliability and sensitivity analysis of embedded systems with modular dynamic fault trees", In TENCON, Melbourne, Qld., 2005.
[25] J.B. Ke, L. Wen-Chiung, W. Kuo-Hsiung, "Reliability and sensitivity analysis of a system with multiple unreliable service stations and standby switching failures", Physica A: Statistical Mechanics and its Applications, Vol. 380, No. 1, pp. 455-469, 2007.
[26] K.H. Wang, J.B. Ke, W.C. Lee, "Reliability and sensitivity analysis of a repairable system with warm standbys and reliable unreliable service stations", International Journal of Advanced Manufacturing Technology, Vol. 31, No. 11-12, pp. 1223-1232, 2007.
[27] P. Do Van, B. Anne, B. Christophe, "Importance measure on finite time horizon and application to markovian multistate production systems", Institution of Mechanical Engineers, Vol. 222, No. 3, pp. 449-461, 2008.
[28] P. Do Van, B. Anne, B. Christophe, "Reliability importance analysis of markovian systems at steady state using perturbation analysis", Reliability Engineering & System Safety, Vol. 93, No. 11, pp. 1605-1615, 2008.
[29] G. Petkov, M. Pekov, "Ageing effects sensitivity analysis by dynamic system reliability methods (GO-FLOW and ATRD)", Report from Technical University of Sofia, Bulgaria, 2009.
[30] S. Contini, F. Luciano, M. Vaidas, "A novel method to apply importance and sensitivity analysis to multiple fault trees", Journal of Loss Prevention in the Process Industries, Vol. 23, No. 5, pp. 574-584, 2010.
[31] R. Matos Junior, G. Almir, C. Kadna, M. Paulo, T. Kishor, "Sensitivity analysis of availability of redundancy in computer networks", In The Fourth International Conference on Communication Theory, Reliability, and Quality of Service, Budapest, Hungary, 2011.
[32] K. Alex, J. Olds, "Reliability analysis technique comparison, as applied to the space shuttle", AE8900 Special Project, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 2003.
[33] N. Limnios, Fault Trees, New York, United States: John Wiley & Sons, 2013.
[34] K. Aslansefat, G. Latif-Shabgahi, S. Zaferanchi, "A systematic method sensitivity analysis of module failure in NMR architecture based on fault tree", In 9th Maintenance Conference, Tehran, Iran, 2014 (In Persian).
[35] E. Dubrova, Fault-Tolerant Design, New York Heidelberg Dordrecht London: Springer, 2012.
[36] K. Aslansefat, "A novel approach for reliability and safety evaluation of control systems with dynamic fault tree", MSc. Thsis, Abbaspur Campus, Shahid Beheshti University, Tehran, Iran, 2014.
[37] R.A. Maire, A.L. Reibman, K.S. Trivedi, "Transient analysis of acyclic markov chains", Performance Evaluation, Vol. 7, No. 3, pp. 175-194, 1987
_||_