تاثیر نوع و میزان امپدانس محدودکنندههای جریان خطا بر پایداری گذرای سیستم قدرت با در نظر گرفتن زمان قطع کلید
محورهای موضوعی : دینامیک سیستم قدرتمهدی دهقانی اشکذری 1 , سید محمود مدرسی 2 * , سید امین سعید 3 , طاهره دائمی 4 , حمیدرضا اکبری 5
1 - دانشکده مهندسی برق- واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
2 - دانشکده مهندسی برق- واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشکده مهندسی برق- واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
4 - دانشکده مهندسی برق- واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
5 - دانشکده مهندسی برق- واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
کلید واژه: جریان اتصال کوتاه, پایداری گذرا, پایداری سیستم قدرت, دینامیک سیستم قدرت, زمان رفع خطا, محدودکننده جریان خطا,
چکیده مقاله :
: به طور کلی اساس عملکرد اغلب محدودکننده های جریان خطا کاهش جریان اتصال کوتاه به وسیله واردکردن یک امپدانس بزرگ در مدار در زمان وقوع خطا است. محدودکننده های جریان خطا در مورد نوع امپدانس و چگونگی وارد شدن و خارج شدن امپدانس به سیستم با هم متفاوت هستند. دراین مقاله با در نظر گرفتن سه مکان مختلف جهت نصب محدودکننده جریان خطا در یک شبکه قدرت نمونه و همچنین تغییر نوع (سلفی یا مقاومتی) و مقدار امپدانس آن در یک بازه بزرگ، اثرات این پارامترها بر پایداری سیستم قدرت مورد بررسی و تحلیل قرار گرفته است. معیاری که برای اولین بار در این مقاله توسط نویسندگان جهت بررسی و ارزیابی پایداری گذرای سیستم قدرت مورد استفاده قرار گرفته است، روش اختلاف بین سطح شتاب دهنده و شتاب گیرنده است. اساس این روش بر مبنای معیار سطوح برابر است. موارد دیگری که در این مقاله به آن پرداخته شده است یکی ارایه روشی جهت مکان یابی و تعیین مقدار بهینه امپدانس محدودکننده جریان خطا جهت بهبود پایداری سیستم قدرت است. همچنین، اثر زمان رفع خطا بر پایداری گذرا، هنگام حضور محدودکننده جریان خطا در شبکه قدرت، مورد مطالعه قرار گرفته است.
In general, the basis of operation of most fault current limiters is to reduce the short-circuit current by adding a large impedance to the system at the time of the fault. However, fault current limiters differ in the type of impedance and how the impedance adds and removes the system. In this paper, taking into account three different locations for installing fault current limiter in a sample power network, as well as changing the type (inductance or resistance) and its impedance value in an extensive range, the effects of these parameters on the stability of the power system have been investigated and analyzed. The criterion used for the first time in this article by the authors to examine and evaluate the transient stability of the power system is the method of the difference between the accelerating and decelerating area. The basis of this method is based on the equal area criterion. Other issues addressed in this paper are presenting a method for locating and determining the optimal value of fault current limiter impedance to improve the stability of the power system. Also, the effect of fault clearing time on transient stability has been studied when the fault current limiter is present in the power grid.
[1] H. Schmitt, "Fault current limiters report on the activities of CIGRE WG A3.16", Proceeding of the IEEE/PES, pp. 1-5, Montreal, QC, Canada, June 2006 (doi: 10.1109/pes.2006.1709205).
[2] M.R. Barzegar-Bafrooei, A.A. Foroud, "Investigation of the performance of distance relay in the presence of saturated iron core SFCL and diode bridge type SFCL", International Transactions on Electrical Energy Systems, vol. 29, no. 2, Article Number: e2736, Feb. 2019 (doi: 10.1002/etep.2736).
[3] G.G. Sotelo, G. Santos, F. Sass, B.W. França, D.H.N. Dias, M.Z. Fortes, A. Polasek, R.A. Jr, "A review of superconducting fault current limiters compared with other proven technologies", Superconductivity, vol. 3, Article Number: 100018, Sept. 2022 (doi: 10.1016/j.supcon.2022.100018).
[4] M.T. Hagh, S.B. Naderi, M. Jafari, "New resonance type fault current limiter", Proceeding of the IEEE/ICPE, pp. 507-511, Kuala Lumpur, Malaysia, Nov./Dec. 2010 (doi: 10.1109/pecon.2010.5697635).
[5] S.P. Valsan, K.S. Swarup, "High-speed fault classification in power lines: Theory and FPGA-based implementation", IEEE Trans. on Industrial Electronics, vol. 56, no. 5, pp. 1793–1800, 2009 (doi: 10.1109/tie.2008.2011055).
[6] P. Rodriguez, A. V Timbus, R. Teodorescu, M. Liserre, F. Blaabjerg, "Flexible active power control of distributed power generation systems during grid faults", IEEE Trans. on Industrial Electronics, vol. 54, no. 5, pp. 2583–2592, Oct. 2007 (doi: 10.1109/tie.2007.899914).
[7] S.M. Modaresi, H. Lesani, "Analysis of the effect of location and failure rates of fault current limiters on substations reliability", International Transactions on Electrical Energy Systems, vol. 27, no. 11, Article Number: e2379, Nov. 2017 (doi: 10.1002/etep.2379).
[8] D. Cvoric, S.W.H. Haan, J.A. Ferreira, Z. Yuan, M.V. Riet, J. Bozelie, "New three-phase inductive FCL With common core and trifilar windings", IEEE Trans. on Power Delivery, vol. 25, no. 4, pp. 2246–2254, Oct. 2010 (doi: 10.1109/tpwrd.2010.2051688).
[9] M. Naseh, "Optimization of recloser-fuse coordination by considering distributed generation and FCL", Proceedings of the IEEE/IPAPS, Zahedan, Iran, Jan. 2022 (doi: 10.1109/IPAPS55380.2022.9763264).
[10] H. Javadi, "Fault current limiter using a series impedance combined with bus sectionalizing circuit breaker", vol. 33, no. 3, pp. 731-736, March 2011 (doi: 10.1016/j.ijepes.2010.11.023)..
[11] M. Fotuhi-Firuzabad, F. Aminifar, I. Rahmati, "Reliability study of HV substations equipped with the fault current limiter", IEEE Trans. on Power Delivery, vol. 27, no. 2, pp. 610–617, April 2012 (doi: 10.1109/tpwrd.2011.2179122).
[12] M. Modaresi, H. Lesani, "New method to determine optimum impedance of fault current limiters for symmetrical and/or asymmetrical faults in power systems", Frontiers of Information Technology and Electronic Engineering, vol. 19, no. 2, pp. 297–307, April 2018 (doi: 10.1631/fitee.1601689).
[13] G. Didier, J. Lévêque, A. Rezzoug, "A novel approach to determine the optimal location of SFCL in electric power grid to improve power system stability", IEEE Trans. on Power Systems, vol. 28, no. 2, pp. 978-984, May 2013 (doi: 10.1109/TPWRS.2012.2224386).
[14] S.B. Naderi, M. Jafari, M. Tarafdar-Hagh, "Parallel-resonance-type fault current limiter", IEEE Trans. on Industrial Electronics, vol. 60, no. 7, pp. 2538–2546, July 2013 (doi: 10.1109/tie.2012.2196899).
[15] M. S.E. Moursi, R. Hegazy, "Novel technique for reducing the high fault currents and enhancing the security of ADWEA power system", IEEE Trans. on Power Systems, vol. 28, no. 1, pp. 140–148, Feb. 2013 (doi: 10.1109/tpwrs.2012.2207746).
[16] A. Heidary, H. Radmanesh, K. Rouzbehi, A. Mehrizi-Sani, G.B. Gharehpetian, "Inductive fault current limiters: A review", Electric Power Systems Research, vol. 187, Article Number: 106499, Oct. 2020 (doi: 10.1016/j.epsr.2020.106499).
[17] S. Robak, K. Gryszpanowicz, M. Piekarz, M. Polewaczyk, "Transient stability enhancement by series braking resistor control using local measurements", International Journal of Electrical Power and Energy Systems, vol. 112, pp. 272–281, Nov. 2019, (doi: 10.1016/j.ijepes.2019.05.015).
[18] S.C. Mukhopadhyay, M. Iwahara, S. Yamada, F.P. Dawson, "Investigation of the performances of a permanent magnet biased fault current limiting reactor with a steel core", IEEE Trans. on Magnetic, vol. 34, no. 4, pp. 2150–2152, July 1998 (doi: 10.1109/20.706833).
[19] M.R. Barzegar‐Bafrooei, A.A. Foroud, J.D. Ashkezari, M. Niasati, "On the advance of SFCL: A comprehensive review", IET Generation, Transmission and Distribution, vol. 13, no. 17, pp. 3745–3759, Sept. 2019 (doi: 10.1049/iet-gtd.2018.6842).
[20] K.B. Yadav, A. Priyadarshi, S. Shankar, V. Rathore, "Study of fault current limiter- A survey", Lecture Notes in Electrical Engineering, pp. 97–113, July 2020 (doi: 10.1007/978-981-15-4692-1_8).
[21] G. Didier, C.H. Bonnard, B. Douine, J. Leveque, "Power system stability improvement with superconducting fault current limiter", Proceeding of the IEEE/CISTEM, pp. 1-6, Tunis, Tunisia, Nov. 2014 (doi: 10.1109/cistem.2014.7076971).
[22] S. Alaraifi, M.S.E. Moursi, H.H. Zeineldin, "Optimal allocation of HTS-FCL for power system security and stability enhancement", IEEE Trans. on Power Systems, vol. 28, no. 4, pp. 4701–4711, Nov. 2013 (doi: 10.1109/tpwrs.2013.2273539).
[23] J. Zhu, Y. Zhu, D. Wei, C. Liu, G. Lv, P. Chen, K. Ding, H. Qin, W. Yang,"Design and evaluation of a novel non-inductive unit for a high temperature superconducting fault current limiter (SFCL) with bias magnetic field", IEEE Trans. on Applied Superconductivity, vol. 29, no. 5, pp. 1–4, Aug. 2019 (doi: 10.1109/tasc.2019.2898518).
[24] S. Das, A. B. Choudhury, T. Santra, "Analysis of magnetic fault current limiter for faults initiating at different positions of a current waveform", Proceeding of the IEEE/ICICCSP, pp. 1-5, Hyderabad, India, July 2022 (doi: 10.1109/iciccsp53532.2022.9862481).
[25] Z. Hong, J. Sheng, L. Yao, J. Gu, Z. Jin, “The structure, performance and recovery time of a 10 kV resistive type superconducting fault current limiter”, IEEE Trans. on Applied Superconductivity, vol. 23, no. 3, pp. 5601304-5601304, June 2013 (doi: 10.1109/tasc.2012.2231899).
[26] J.G. Lee, U.A. Khan, J.S. Hwang, J.K. Seong, W.J. Shin, B.B. Park, B.W. Lee, “Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system”, Physica C: Superconductivity and its Applications, vol. 504, pp. 163–166, Sept. 2014 (doi: 10.1016/j.physc.2014.03.019).
[27] M. Tsuda, Y. Mitani, K. Tsuji, K. Kakihana, “Application of resistor based superconducting fault current limiter to enhancement of power system transient stability”, IEEE Trans. on Applied Superconductivity, vol. 11, no. 1, pp. 2122–2125, March 2001 (doi: 10.1109/77.920276).
[28] G. Didier, C.H. Bonnard, T. Lubin, J. Lévêque, “Comparison between inductive and resistive SFCL in terms of current limtyitation and power system transient stabili”, Electric Power Systems Research, vol. 125. pp. 150–158, Aug. 2015 (doi: 10.1016/j.epsr.2015.04.002).
_||_