یک چارچوب سه مرحلهای برای تعیین استراتژی بهینه ریزشبکهها جهت مشارکت در بازار رقابتی روز بعد با در نظر گرفتن خودروهای الکتریکی و برنامههای پاسخگویی تقاضا
محورهای موضوعی : انرژی های تجدیدپذیرابوالفضل بیاتیان 1 , امیر احمری نژاد 2 *
1 - دانشکده مهندسی برق و کامپیوتر- واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده فنی و مهندسی- واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: منابع انرژی تجدیدپذیر, برنامهریزی ریزشبکهها, خودروهای الکتریکی, برنامههای پاسخگویی تقاضا, روش تئوری بازی مشارکتی, استراتژی پیشنهادی بهینه,
چکیده مقاله :
در این مقاله یک چارچوب سه مرحلهای مبتنی بر سناریو برای تعیین استراتژی بهینه و برنامهریزی ریزشبکههای قرار گرفته در یک سیستم توزیع 118 شینه ارائه شده است. عدم قطعیتهای منابع تجدیدپذیر، تقاضای بار و برنامه شارژ/دشارژ خودروهای الکتریکی در نظر گرفته شده است. برای ارتقای انعطاف در برنامهریزی، بهرهبردار قادر خواهد بود تا از طریق بازآرایی سیستم توزیع مسیر شارش توان را تغییر دهد. همچنین در مدل پیشنهادی مشترکین قادر به کاهش هزینههای خود از طریق مشارکت در یک برنامه پاسخگویی تقاضا هستند. در مرحله اول مدل پیشنهادی، استراتژی پیشنهادی ریزشبکهها تعیین می شود. در مرحله دوم قیمت تسویه بازار توسط بهرهبردار مستقل سیستم و با توجه به پیشنهادات ارسالی مشخص می گردد. در نهایت، در مرحله سوم مسئله برنامهریزی نهایی ریزشبکهها توسط یک روش تئوری بازی مشارکتی حل میشود. مدل پیشنهادی توسط حلکننده CPLEX در نرمافزار گمز حل شده و نتایج نشان میدهند که توپولوژی دینامیک انعطاف برنامهریزی را ارتقا داده و از این طریق منجر به کاهش حدود 10 درصدی هزینه بهرهبرداری کل شده است. همچنین نتایج نشان میدهند که هماهنگی خودروهای الکتریکی با برنامهریزی، حضور سیستمهای ذخیرهساز و اجرای برنامه پاسخگویی تقاضا منجر به کاهش چشمگیر سطح قیمت تسویه بازار و در نتیجه کاهش هزینههای بهرهبرداری میشود.
In this paper, a three-level scenario-based framework for determining the optimal strategy and planning of microgrids located in a 118-bus distribution system is presented. This paper considers the uncertainties of renewable energy resources, load demand, and the charge / discharge schedule of electric vehicles. In order to increase planning flexibility, the operator will be able to change the flow through the distribution feeder reconfiguration. Also in the proposed model, customers will be able to reduce their costs by participating in a demand response program. In the first level of the proposed model, the bidding strategy of microgrids is determined. In the second level, the market clearing price is determined by the independent system operator and according to the submitted bids. Finally, in the third stage, the problem of final microgrid programming is solved by a participatory game theory method. The proposed model is solved by the CPLEX solver in GAMS software and the results show that the dynamic topology improves the planning flexibility and thus reduces the total operating cost by about 10%. The results also show that the coordination of electric vehicles with scheduling, the presence of storage systems and the implementation of the demand response program leads to a significant reduction in the level of market-clearing price and thus reduce operating costs.
[1] S.A. Mansouri, M.S. Javadi, "A robust optimisation framework in composite generation and transmission expansion planning considering inherent uncertainties", Journal of Experimental & Theoretical Artificial Intelligence, vol. 29, no. 4, pp. 717–730, 2017 (doi: 10.1080/0952813X.2016.1259262).
[2] M. Uddin, M.F. Romlie, M.F. Abdullah, S. Abd Halim, A.H.A. Bakar, T.C. Kwang, "A review on peak load shaving strategies", Renewable and Sustainable Energy Reviews, vol. 82, pp. 3323–3332, Feb. 2018 (doi: 10.1016/j.rser.2017.10.056).
[3] S. Cai, Y. Xie, Q. Wu, Z. Xiang, "Robust MPC-based microgrid scheduling for resilience enhancement of distribution system", International Journal Electrical Power and Energy Systems., vol. 121, Article Number: 106068, Oct. 2020 (doi: 10.1016/j.ijepes.2020.106068).
[4] S.A. Mansouri, A. Ahmarinejad, M.S. Javadi, A.E. Nezhad, M. Shafie-Khah, J.P.S. Catalão, "Chapter 9- Demand response role for enhancing the flexibility of local energy systems", Distributed Energy Resources in Local Integrated Energy Systems, pp. 279–313, 2021 (doi: 10.1016/B978-0-12-823899-8.00011-X).
[5] E.A. Javadi, M. Joorabian, H. Barati, "A sustainable framework for resilience enhancement of integrated energy systems in the presence of energy storage systems and fast-acting flexible loads", Journal Energy Storage, vol. 49, Article Number: 104099, May 2022, (doi: 10.1016/j.est.2022.104099).
[6] A. Sahoo, P.K. Hota, "Impact of energy storage system and distributed energy resources on bidding strategy of micro-grid in deregulated environment", Journal Energy Storage, vol. 43, Article Number: 103230, Nov. 2021, (doi: 10.1016/j.est.2021.103230).
[7] M. Shafiekhani, A. Ahmadi, O. Homaee, M. Shafie-khah, J.P.S. Catalão, "Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads", Energy, vol. 239, Article Number: 122379, Jan. 2022 (doi: 10.1016/j.energy.2021.122379).
[8] L. Wang, Y. Zhang, W. Song, Q. Li, "Stochastic cooperative bidding strategy for multiple microgrids with peer-to-peer energy trading", IEEE Trans. on Industrial Informatics, vol. 18, no. 3, pp. 1447–1457, March 2022 (doi: 10.1109/TII.2021.3094274).
[9] H. Mehrjerdi, "Multilevel home energy management integrated with renewable energies and storage technologies considering contingency operation", Journal Renewable and Sustainable Energy Reviews, vol. 11, no. 2, Articael Number: 25101, Mar. 2019 (doi: 10.1063/1.5085496).
[10] S. Aslam, A. Khalid, N. Javaid, "Towards efficient energy management in smart grids considering microgrids with day-ahead energy forecasting", Electric Power Systems Research, vol. 182, no. 3, Article Number: 106232, May 2020 (doi: 10.1016/j.jobe.2019.100976).
[11] H.J. Kim, M.K. Kim, "Risk-based hybrid energy management with developing bidding strategy and advanced demand response of grid-connected microgrid based on stochastic/information gap decision theory", International Journal Electrical Power and Energy Systems, vol. 131, Article Number: 107046, Oct. 2021, (doi: 10.1016/j.ijepes.2021.107046).
[12] M. Alizadeh Bidgoli, A. Ahmadian, "Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach", Energy, vol. 239, Article Number: 122036, Jan. 2022 (doi: 10.1016/j.energy.2021.122036).
[13] X. Ding, Q. Guo, T. Qiannan, and K. Jermsittiparsert, "Economic and environmental assessment of multi-energy microgrids under a hybrid optimization technique", Sustainable Cities and Society, vol. 65, Article Number: 102630, Feb. 2021, (doi: 10.1016/j.scs.2020.102630).
[14] K. Hamedi, S. Sadeghi, S. Esfandi, M. Azimian, H. Golmohamadi, "Eco-emission analysis of multi-carrier microgrid integrated with compressed air and power-to-gas energy storage technologies", Sustainability, vol. 13, no. 9, Article Number: 4681, April 2021 (doi: 10.3390/su13094681).
[15] S.A. Mansouri, A. Ahmarinejad, E. Nematbakhsh, M.S. Javadi, A.R. Jordehi, J.P.S. Catalão, "Energy management in microgrids including smart homes: A multi-objective approach", Sustainable Cities and Society, vol. 69, Article Number: 102852, June 2021, (doi:10.1016/j.scs.2021.102852).
[16] B. Javanmard, M. Tabrizian, M. Ansarian, A. Ahmarinejad, "Energy management of multi-microgrids based on game theory approach in the presence of demand response programs, energy storage systems and renewable energy resources", Journal of Energy Storage, vol. 42, Article Number: 102971, Oct. 2021 (doi: 10.1016/j.est.2021.102971).
[17] F. Sheidaei, A. Ahmarinejad, M. Tabrizian, M. Babaei, "A stochastic multi-objective optimization framework for distribution feeder reconfiguration in the presence of renewable energy sources and energy storages", Journal of Energy Storage, vol. 40, Article Number: 102775, Aug. 2021 (doi: 10.1016/j.est.2021.102775).
[18] M.A. Hormozi, B. Bahmani-Firoozi, T. Niknam,"Bi-Level energy management optimization in multi-area smart grids", Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 42, pp. 29-40, Aug. 2020 (dor: 20.1001.1.23223871.1399.11.42.3.4).
[19] S. Gorji, S. Zamanian, M. Moazzami, "Techno-economic and environmental base approach for optimal energy management of microgrids using crow search algorithm", Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 49–68, Oct. 2020 (dor: 20.1001.1.23223871.1399.11.43.4.7).
[20] G.R. Aghajani, H.A. Shayanfar, H. Shayeghi, "Demand side management in a smart micro-grid in the presence of renewable generation and demand response", Energy, vol. 126, pp. 622–637, May 2017 (doi: 10.1016/j.energy.2017.03.051).
[21] S.A. Mansouri, A. Ahmarinejad, E. Nematbakhsh, M.S. Javadi, A. Esmaeel-Nezhad, J.P.S. Catalão, "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources", Energy, vol 245, Article Number: 123228, April 2022 (doi: 10.1016/j.energy.2022.123228).
[22] S.A. Mansouri, A. Ahmarinejad, E. Nematbakhsh, M.S. Javadi, A.R. Jordehi, J.P. Catalão, "Energy management in microgrids including smart homes: A multi-objective approach", Sustainable Cities and Society, vol. 69, Article Number: 102852, June 2021 (doi: 10.1016/j.scs.2021.102852).
_||_