افزایش کارایی الگوریتم تخلیه در محاسبات مه با کمک الگوریتم بهینهسازی ازدحام ذرات
محورهای موضوعی : الگوریتم های فرا ابتکاریسید ابراهیم دشتی 1 , حسین زارع 2
1 - دانشکده برق و کامپیوتر- واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران
2 - دانشکده برق و کامپیوتر- واحد زاهدشهر، دانشگاه آزاد اسلامی، زاهدشهر، ایران
کلید واژه: الگوریتم بهینهسازی ازدحام ذرات, پردازش ابری, محاسبات مه, مسئله تخلیه بار, الگوریتم تکاملی,
چکیده مقاله :
با توجه به کاربرد روزافزون محاسبات مه لزوم ارائه راه حل هایی جهت افزایش کارآیی آنها به شدت احساس می شود. بر اساس این مسئله که تعداد دستگاههای لبهای زیاد است، باید ساز و کاری برای انتخاب این وظایف و تخلیه آنها به ابر وجود داشته باشد. مسئله مورد نظر برای تصمیم گیری این است که از بین آن دستگاه لبههای موجود برای تخلیه کدام یک از آنها انتخاب و سپس تخلیه گردد، که این مسئله در زمره مسائل غیر چندجملهای سخت قرار گرفته و با استفاده از الگوریتمهای قطعی به سادگی و در زمان چندجملهای نمیتوان راهحلی مناسب و کارآمد برای آن یافت نمود. در این مقاله برای حل این مساله از الگوریتم بهینهسازی ازدحام ذرات (PSO) استفاده شده است. روش پیشنهادی با تعریف تابع هدف مناسب برحسب تخلیه مناسب بار و توزیع عادلانه وظایف بر روی منابع محاسباتی کارآیی را نسبت به روش های مشابه بهبود داده است. در مقایسه با روشهای دیگر، مانند روش بدون بارگیری، بارگیری کامل به روش ابر و بارگذاری کامل به روش ابر، آزمایشها و شبیهسازیهای گسترده نشان دادهاند که روش پیشنهادی مؤثر است و میتواند استراتژی بارگذاری بهینه را برای کاربران سیار فراهم کند. برای ارزیابی این روش از دادههای واقعی پلنت لب استفاده شده و نتایج بیانگر این است که روش پیشنهادی مصرف انرژی را بین 3 تا 10 درصد و زمان اجرای کل نیز بین 5 تا 8 درصد در مقایسه با روشهای دیگر کاهش یافته است.
Edge computing is a computing paradigm that extends cloud services to devices at the edge. This processing model refers to technologies that allow computing and storage to be performed on devices at the edge of the network. In this architecture, computing and storage operations take place close to objects and data sources. In order to reduce latency and network traffic between end devices and cloud centers, groups at the edge have processing capabilities, perform a large number of processing and computing tasks, including data processing, temporary storage, device management, decision making, and privacy protection. Since the number of edge devices is large, there must be a mechanism to select these tasks and offload them to the cloud. The problem to be decided is that which one of the available edge devices should be selected for unloading and then unloaded. This problem is classified as one of the hard non-polynomial problems and by using deterministic algorithms simply and in polynomial time, it is not possible to find a suitable and efficient solution for it found.
[1] M. Keshavarznejad, M.H. Rezvani, S. Adabi, "Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms", Cluster Computing, vol. 24, no. 3, pp. 1825-1853, Sept. 2021 (doi: 10.1007/s10586-020-03230-y).
[2] A. Shakarami, M. Ghobaei-Arani, M. Masdari, M. Hosseinzadeh, "A survey on the computation offloading approaches in mobile edge/cloud computing environment: A stochastic-based perspective", Journal of Grid Computing, vol. 18, no. 4, pp. 639–671, Dec. 2020 (doi: 10.1007/s10723-020-09530-2).
[3] A.M.A. Hamdi, F.K. Hussain, O.K. Hussain. "Task offloading in vehicular fog computing: State-of-the-art and open issues", Future Generation Computer Systems, vol. 133, pp. 201-212, Aug. 2022 (doi: 10.1016/j.future.2022.03.019).
[4] A. Banerjee, U.C. Gupta. "Reducing congestion in bulk-service finite-buffer queueing system using batch-size-dependent service", Performance Evaluation, vol. 69, no. 1, pp. 53-70, Jan. 2012 (doi: 10.1016/j.peva.2011.09.002).
[5] A. Shakarami, M. Ghobaei-Arani, M. Masdari, M. Hosseinzadeh, "A survey on the computation offloading approaches in mobile edge/cloud computing environment: a stochastic-based perspective", Journal of Grid Computing, vol. 18, no. 4, pp. 639-671, Aug. 2020 (doi: 10.1007/s10723-020-09530-2).
[6] S. AlShathri, S.A. Chelloug, D.S.M. Hassan, "Parallel meta-heuristics for solving dynamic offloading in fog computing", Mathematics, vol. 10, no. 8, Article Number: 1258, April 2022 (doi: 10.3390/math10081258).
[7] M. Zhang, L. Liu, S. Liu. "Genetic algorithm based QoS-aware service composition in multi-cloud", Proceeding of the IEEE/CIC, Hangzhou, China, Oct. 2015 (doi: 10.1109/CIC.2015.23).
[8] M. Chen, M. Dong, B. Liang, "Resource sharing of a computing access point for multi-user mobile cloud offloading with delay constraints", IEEE Trans. on Mobile Computing, vol. 17, no. 12, pp. 2868-2881, March 2018 (doi: 10.1109/TMC.2018.2815533).
[9] H. Boostanimehr, K. Vijay, "Joint downlink and uplink aware cell association in HetNets with QoS provisioning", IEEE Trans. on Wireless Communications, vol. 14, no. 10, pp. 5388-5401, Oct. 2015 (doi: 10.48550/arXiv.2110.11121).
[10] Q. Yao, T. QS Quek, A. Huang, H. Shan, "Joint downlink and uplink energy minimization in WET-enabled networks", IEEE Trans. on Wireless Communications, vol. 16, no. 10, pp. 6751-6765, Oct. 2017 (doi: 10.1155/2018/7906957).
[11] C. Wang, F. Richard Yu, C. Liang, Q. Chen, L. Tang, "Joint computation offloading and interference management in wireless cellular networks with mobile edge computing", IEEE Trans. on Vehicular Technology, vol. 66, no. 8, pp. 7432-7445, Aug. 2017 (doi: 10.1109/GLOCOM.2018.8647593).
[12] Z. Dong, Y. Liu, H. Zhou, X. Xiao, Y. Gu, L. Zhang, C. Liu, "An energy-efficient offloading framework with predictable temporal correctness", Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pp. 1-12, 2017 (doi: 10.1145/3132211.3134448).
[13] G. Klas, "Edge computing and the role of cellular networks", Computer, vol. 50, no. 10, pp. 40-49, Oct. 2017 (doi: 10.1109/MC.2017.3641649).
[14] B. Huang, Z. Li, P. Tang, S. Wang, J. Zhao, H. Hu, W. Li, V. Chang. "Security modeling and efficient computation offloading for service workflow in mobile edge computing", Future Generation Computer Systems, vol. 97, pp. 755-774, Aug. 2019 (doi: 10.1016/j.future.2019.03.011).
[15] S.R. Nabavi, N. Osati-Eraghi, J. Akbari-Torkestani, "Wireless sensor networks routing using clustering based on multi-objective particle swarm optimization algorithm", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 29-47, Dec. 2021 (in Persian) (dor: 20.1001.1.23223871.1400.12.3.3.3).
[16] M. Momeny, S. Gharravi, F. Hourali, “Reducing the impact of SYN flood attacks by improving the accuracy of the PSO algorithm by adaptive effective filters”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 37, pp. 51-57, May 2019 (in Persian) (dor: 20.1001.1.23223871.1398.10.37.6.0).
[17] Q. Wang, Y. Mao, Y. Wang, L. Wang. "Computation tasks offloading scheme based on multi-cloudlet collaboration for edge computing", Proceeding of the IEEE/CBD, pp. 339-344, Suzhou, China, Sept. 2019 (doi: 10.1109/CBD.2019.00067).
[18] D. Jun, E. Gelenbe, C. Jiang, H. Zhang, Y. Ren. "Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks", IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2457-2467, Nov. 2017 (doi: 10.1109/JSAC.2017.2760459).
[19] G. Mardanian, N. Behzadfar, “A new method for detection of breast cancer in mammography images using a firefly algorithm”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 40, pp. 23-32, March 2020 (in Persian) (dor: 20.1001.1.23223871.1398.10.40.3.3).
[20] L. Abualigah, M. Shehab, M. Alshinwan, S.A. Mirjalili, M.A. Elaziz, "Ant lion optimizer: A comprehensive survey of its variants and applications", Archives of Computational Methods in Engineering, vol. 28, pp. 1397–1416, May 2021 (doi: 10.1007/s11831-020-09420-6).
[21] Z. Song, C. Yu, "Investor sentiment indices based on k-step PLS algorithm: A group of powerful predictors of stock market returns", International Review of Financial Analysis, vol. 83, Article Number: 102321, Oct. 2022 (doi: 10.1016/j.irfa.2022.102321).
_||_