مدیریت بار و انرژی دوهدفه یک هاب انرژی با در نظرگیری برنامه ریزی های گوناگون و در حضور فناوری CCUS و برنامه TOU
محورهای موضوعی : انرژی های تجدیدپذیرفردین نیازوند 1 , سعید خراطی 2 , فرشاد خسروی 3 , عبداله راستگو 4
1 - گروه مهندسی برق- واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
2 - گروه مهندسی برق- واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
3 - گروه مهندسی برق- واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
4 - گروه مهندسی برق- واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
کلید واژه: منابع تولید پراکنده, سیستمهای جذب و ذخیرهسازی کربن, مدیریت انرژی هاب, کنترل بار, برنامهریزی چندهدفه, برنامهریزی قطعی-مقاوم, برنامههای پاسخگویی بار,
چکیده مقاله :
این مقاله یک مدیریت انرژی و بار با استفاده از یک استراتژی سناریو محور را برای ارزیابی عملکرد و برنامهریزی هاب و با در نظرگیری عوامل نامعینی (قیمت الکتریسیته و توان توربین بادی) ارائه نموده است. سیستم جذب و ذخیرهسازی کربن و نیز برنامه پاسخ گویی بار، بهطور ویژه برنامه زمان استفاده مورد بررسی قرار گرفته است. فناوری جذب کربن افزون بر حل مسئله آلودگی واحدهای تولیدی از یکسو، درآمد قابل توجه را نیز برای سیستمهای قدرت از سویی دیگر به ارمغان میآورد. همچنین برنامههای پاسخ گویی بار به بهبود پروفیل بار و کاهش هزینهها و آلودگی هاب، افزایش قابلیت اطمینان و کیفیت توان کمک شایانی مینمایند. هاب پیشنهادی در برگیرنده ادوات تولیدی تجدیدپذیر و تجدیدناپذیر، تبدیلی و ذخیره کنندههای گوناگون است، همچنین برنامهریزیهایی مانند نوع قطعی و مقاوم در نظر گرفته شده است. هاب مفروض در قسمت ورودی و خروجی از حاملهای گوناگون انرژی شامل الکتریسیته، حرارت، سرما، گاز طبیعی و آب پشتیبانی میکند. مسئله بهصورت یک برنامهریزی خطی عدد صحیح مدل شده و بهوسیله سالور سیپلکس در نرمافزار گمز حل گردیده است. در ادامه، از روش اپسیلون و تکنیک رضایتبخشی فازی جهت انتخاب راهحل بهینه استفاده شده است. نتایج نهایی نشان می دهد که هزینه و آلودگی کلی در نمونه مقاوم به ترتیب بهاندازه 9/1 درصد و 3/12 درصد بیشتر از نمونه قطعی است، همچنین برنامه پاسخ گویی بار و فناوری جذب کربن تأثیر چشم گیری بر روی تابع های هدف دارند. همچنین منحنی بار مسطح گردیده و سود خوبی با استفاده از فناوری جذب کربن برای هاب پیشنهادی بهدست آمده است.
This paper presents energy and load management by using a scenario-based assessment strategy for the optimal scheduling of a proposed hub by considering uncertain parameters (electricity price and wind turbine output power). Carbon capture utilization and storage (CCUS) technology and demand response programs (DRP), especially the time of use (TOU) program are investigated. Carbon technology helps to overcome pollution issues, on the one hand, and earn revenue for the power system, on the other hand. Also, the demand response programs help to reduce costs and pollution, make the load curve flatter, increase the reliability and power quality of the network. The proposed energy hub consists of various renewable and non-renewable distributed energy resources, as well different planning horizons, include deterministic and robust ones. The presented hub consists of diverse energy sectors like electricity, heat, cooling, gas, and water at the input and output sections. The problem is then modeled as a MILP and solved using the CPLEX solver in GAMS software. Epsilon constraint method with the fuzzy satisfying approach is used to obtain and select the best solution. The final results show that the cost and the pollution in the robust planning experience the increment by about 12.3% and 1.9% respectively in comparison to deterministic, as well, demand response programs and CCUS technology are had a significant impact on the objective functions. In addition, the load curve has become flatter and the reward by using a carbon system is obtained for the hub.
[1] Y. Wang, X. Wang, H. Yu, Y. Huang, H. Dong, C.Y. Qi, N. Baptiste, “Optimal design of integrated energy system considering economics, autonomy and carbon emissions”, Journal of Cleaner Production, vol. 225, pp. 563-578, July 2019 (doi: 10.1016/j.jclepro.2019.03.025).
[2] S.M. Moghaddas-Tafreshi, S. Mohseni, M.E. Karami, S. Kelly, “Optimal energy management of a grid-connected multiple energy carrier micro-grid”, Applied Thermal Engineering, vol. 152, pp. 796-806, Apr. 2019 (doi: 10.1016/j.applthermaleng.2019.02.113).
[3] S. Gorji, S. Zamanian, M. Moazzami, “Techno-economic and environmental base approach for optimal energy management of microgrids using crow search algorithm”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 49-68, Dec. 2020 (dor: 20.1001.1.23223871.1399.11.43.4.7).
[4] Y. Li, W. Liang, R. Tan, “Optimal design of installation capacity and operation strategy for distributed energy system”, Applied Thermal Engineering, vol. 125, pp. 756-766, Oct. 2017 (doi: 10.1016/j.applthermaleng.2017.07.011).
[5] H. Rahbarimagham, “Optimal control of micro-grid (MG) to improve voltage profile including combined heat and power system”, Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 36, pp. 43-50, Mar. 2019 (dor: 20.1001.1.23223871.1397.9.36.5.0).
[6] M.D.S. Dutra, N. Alguacil, “Optimal residential users coordination via demand response: An exact distributed framework”, Applied Energy, vol. 279, Article Number: 115851, Dec. 2020 (doi: 10.1016/j.apenergy.2020.115851).
[7] M. Zangeneh, E. Aghajari, M. Forouzanfar, “Implementation of smart fuzzy logic strategy to manage energy resources of a residential power system integrating solar energy and storage system using arduino boards”, Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 42, pp. 115-131, June 2022 (dor: 20.1001.1.23223871.1401.13.49.8.7).
[8] M.A. Jirdehi, M. Shaterabadi, “Incentive programs caused by the carbon capture utilization and storage technology profit's effect: optimal configuration and energy planning of hybrid microgrid involving INVELOX turbine”, Energy Technology, vol. 8, no. 10, Article Number: 2000398, Oct. 2020 (doi: 10.1002/ente.202000398).
[9] M.A. Jirdehi, M. Shaterabadi, “A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty”, Greenhouse Gases: Science and Technology, vol. 11, no. 3, pp. 461-482, June 2021 (doi: 10.1002/ghg.2060).
[10] F. Niazvand, S. Kharrati, F. Khosravi, A. Rastgou, “Scenario-based assessment for optimal planning of multi-carrier hub-energy system under dual uncertainties and various scheduling by considering CCUS technology”, Sustainable Energy Technologies and Assessments, vol. 46, Article Number: 101300, Aug. 2021 (doi: 10.1016/j.seta.2021.101300).
[11] M. Miveh, A. Ahmadi, M. Pishvaei, “Design and construction of a water-free cleaning robot for solar panels with the ability to adjust the height”, Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 51, pp. 53-73, Dec. 2022 (dor:20.1001.1.23223871.1401.13.51.4.7).
[12] A. Maroufmashat, A. Elkamel, M. Fowler, S. Sattari, R. Roshandel, A. Hajimiragha, S. Walker, E. Entchev, “Modeling and optimization of a network of energy hubs to improve economic and emission considerations”, Energy, vol. 93, part 2, pp. 2546-2558, Dec. 2015 (doi: 10.1016/j.energy.2015.10.079).
[13] A. Maroufmashat, S. T. Taqvi, A. Miragha, M. Fowler, A. Elkamel, “Modeling and optimization of energy hubs: A comprehensive review”, Inventions, vol. 4, no. 3, p. 50, Aug. 2019 (doi: 10.3390/inventions4030050).
[14] P. Gabrielli, M. Gazzani, E. Martelli, M. Mazzotti, “Optimal design of multi-energy systems with seasonal storage”, Applied Energy, vol. 219, pp. 408-424, June 2018 (doi: 10.1016/j.apenergy.2017.07.142).
[15] F. Barati, H. Seifi, M. S. Sepasian, A. Nateghi, M. Shafie-khah, J. P. Catalão, “Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems”, IEEE Trans. on Power Systems, vol. 30, no. 5, pp. 2527-2537, Sep. 2015 (doi: 10.1109/TPWRS.2014.2365705).
[16] Y. Hu, Z. Bie, T. Ding, Y. Lin, “An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning”, Applied energy, vol. 167, pp. 280-293, Apr. 2016 (doi: 10.1016/j.apenergy.2015.10.148).
[17] M. Chaudry, N. Jenkins, M. Qadrdan, J. Wu, “Combined gas and electricity network expansion planning”, Applied Energy, vol. 113, pp. 1171-1187, Jan. 2014 (doi: 10.1016/j.apenergy.2013.08.071).
[18] B. Odetayo, J. MacCormack, W. Rosehart, H. Zareipour, “A chance constrained programming approach to integrated planning of distributed power generation and natural gas network”, Electric Power Systems Research, vol. 151, pp. 197-207, Oct. 2017 (doi: 10.1016/j.epsr.2017.05.036).
[19] S. Clegg, P. Mancarella, “Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks”, IEEE Trans. on Sustainable Energy, vol. 6, no. 4, pp. 1234-1244, Oct. 2015 (doi: 10.1109/TSTE.2015.2424885).
[20] S. Clegg, P. Mancarella, “Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon power systems”, IET Generation, Transmission and Distribution, vol. 10, no. 3, pp. 566-575, Feb. 2016 (doi: 10.1049/iet-gtd.2015.0439).
[21] A. Najafi, H. Falaghi, J. Contreras, M. Ramezani, “Medium-term energy hub management subject to electricity price and wind uncertainty”, Applied Energy, vol. 168, pp. 418-433, April 2016 (doi: 10.1016/j.apenergy.2016.01.074).
[22] A. Sheikhi, S. Bahrami, A.M. Ranjbar, “An autonomous demand response program for electricity and natural gas networks in smart energy hubs”, Energy, vol. 89, pp. 490-499, Sep. 2015 (doi: 10.1016/j.energy.2015.05.109).
[23] A. Sheikhi, M. Rayati, S. Bahrami, A.M. Ranjbar, S. Sattari, “A cloud computing framework on demand side management game in smart energy hubs”, International Journal of Electrical Power and Energy Systems, vol. 64, pp. 1007-1016, Jan. 2015 (doi: 10.1016/j.ijepes.2014.08.020).
[24] S. Heinen, D. Burke, M. O'Malley, “Electricity, gas, heat integration via residential hybrid heating technologies–An investment model assessment”, Energy, vol. 109, pp. 906-919, Aug. 2016 (doi: 10.1016/j.energy.2016.04.126).
[25] R. Niemi, J. Mikkola, P. Lund, “Urban energy systems with smart multi-carrier energy networks and renewable energy generation”, Renewable energy, vol. 48, pp. 524-536, Dec. 2012 (doi: 10.1016/j.renene.2012.05.017).
[26] A. Dini, S. Pirouzi, M. Norouzi, M. Lehtonen, “Grid-connected energy hubs in the coordinated multi-energy management based on day-ahead market framework”, Energy, vol. 188, Article Number: 116055, Dec. 2019 (doi: 10.1016/j.energy.2019.116055).
[27] M. Ghorab, “Energy hubs optimization for smart energy network system to minimize economic and environmental impact at canadian community”, Applied Thermal Engineering, vol. 151, pp. 214-230, Mar. 2019 (doi: 10.1016/j.applthermaleng.2019.01.107).
[28] A. Najafi-Ghalelou, S. Nojavan, K. Zare, B. Mohammadi-Ivatloo, “Robust scheduling of thermal, cooling and electrical hub energy system under market price uncertainty”, Applied Thermal Engineering, vol. 149, pp. 862-880, Feb. 2019 (doi: 10.1016/j.applthermaleng.2018.12.108).
[29] S.D. Beigvand, H. Abdi, M. La Scala, “Economic dispatch of multiple energy carriers”, Energy, vol. 138, pp. 861-872, Nov. 2017 (doi: 10.1016/j.energy.2017.07.108).
[30] B.M. Soudmand, N.N. Esfetanaj, S. Mehdipour, R. Rezaeipour, “Heating hub and power hub models for optimal performance of an industrial consumer”, Energy Conversion and Management, vol. 150, pp. 425-432, Oct. 2017 (doi: 10.1016/j.enconman.2017.08.037).
[31] A. Najafi-Ghalelou, K. Zare, S. Nojavan, “Optimal scheduling of multi-smart buildings energy consumption considering power exchange capability”, Sustainable Cities and Society, vol. 41, pp. 73-85, Aug. 2018 (doi: 10.1016/j.scs.2018.05.029).
[32] S. Nojavan, M. Majidi, K. Zare, “Optimal scheduling of heating and power hubs under economic and environment issues in the presence of peak load management”, Energy Conversion and Management, vol. 156, pp. 34-44, Jan. 2018 (doi: 10.1016/j.enconman.2017.11.007).
[33] M.A. Mirzaei, A.S. Yazdankhah, B. Mohammadi-Ivatloo, M. Marzband, M. Shafie-khah, J.P. Catalão, “Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system”, Journal of Cleaner Production, vol. 223, pp. 747-758, June 2019 (doi: 10.1016/j.jclepro.2019.03.021).
[34] R.S. Amano, “Review of wind turbine research in 21st century”, Journal of Energy Resources Technology, vol. 139, no. 5, Article Number: 050801, Sep. 2017 (doi: 10.1115/1.4037757).
[35] F. Porté-Agel, M. Bastankhah, S. Shamsoddin, “Wind-turbine and wind-farm flows: a review”, Boundary-Layer Meteorology, vol. 174, no. 1, pp. 1-59, Jan. 2020 (doi: 10.1007/s10546-019-00473-0).
[36] M. Shaterabadi, M.A. Jirdehi, “Multi-objective stochastic programming energy management for integrated INVELOX turbines in microgrids: A new type of turbines”, Renewable Energy, vol. 145, pp. 2754-2769, Jan. 2020 (doi: 10.1016/j.renene.2019.08.002).
[37] V.S. Tabar, M.A. Jirdehi, R. Hemmati, “Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option”, Energy, vol. 118, pp. 827-839, Jan. 2017 (doi: 10.1016/j.energy.2016.10.113).
[38] V.S. Tabar, M.A. Jirdehi, R. Hemmati, “Sustainable planning of hybrid microgrid towards minimizing environmental pollution, operational cost and frequency fluctuations”, Journal of Cleaner Production, vol. 203, pp. 1187-1200, Dec. 2018 (doi: 10.1016/j.jclepro.2018.05.059).
[39] Y. Wang, L. Li, “Time-of-use based electricity demand response for sustainable manufacturing systems”, Energy, vol. 63, pp. 233-244, Dec. 2013 (doi: 10.1016/j.energy.2013.10.011).
[40] M. Shaterabadi, M.A. Jirdehi, “Smart scheduling of transmission line switching: optimization of multi-objective microgrid’s day-ahead energy scheduling with considering high penetration of green energies and INVELOX”, Electrical Engineering, vol. 103, pp. 1753-1767, June 2021 (doi: 10.1007/s00202-020-01193-2).
[41] J. Aghaei, N. Amjady, H.A. Shayanfar, “Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method”, Applied Soft Computing, vol. 11, no. 4, pp. 3846-3858, June 2011 (doi: 10.1016/j.asoc.2011.02.022).
[42] M. Shaterabadi, M.A. Jirdehi, N. Amiri, S. Omidi, “Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines”, Renewable Energy, vol. 153, pp. 1355-1367, June 2020 (doi: 10.1016/j.renene.2020.02.089).
[43] F. Bre, V.D. Fachinotti, “A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings”, Energy and Buildings, vol. 154, pp. 283-294, Nov. 2017 (doi: 10.1016/j.enbuild.2017.08.002).
[44] J. Wang, M. Shahidehpour, Z. Li, “Security-constrained unit commitment with volatile wind power generation”, IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1319-1327, Aug. 2008 (doi: 10.1109/TPWRS.2008.926719).
[45] V. Davatgaran, M. Saniei, S.S. Mortazavi, “Optimal bidding strategy for an energy hub in energy market”, Energy, vol. 148, pp. 482-493, April 2018 (doi: 10.1016/j.energy.2018.01.174).
_||_