مدیریت انرژی شبکههای توزیع در حضور خانههای هوشمند، منابع انرژی تجدیدپذیر و برنامههای پاسخگویی بار با در نظر گرفتن عدم قطعیتها
محورهای موضوعی : انرژی های تجدیدپذیرسید علیرضا علوی متین 1 , پوریا رادمهر 2 , امیر احمری نژاد 3 * , سید امیر منصوری 4
1 - دانشکده فنی و مهندسی- دانشگاه اراک، اراک، ایران
2 - دانشکده مهندسی برق- واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مهندسی برق- دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران، ایران
4 - دانشکده مهندسی برق- واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: شبکه توزیع, منابع انرژی تجدیدپذیر, مدیریت انرژی, خانههای هوشمند, برنامه پاسخگویی بار, شاخص رفاه مشترکین, عدم قطعیتها,
چکیده مقاله :
در این مقاله، یک مدل مدیریت انرژی جامع به منظور بهرهبرداری از یک سیستم توزیع 33 شینه شعاعی اصلاح شده، با در نظر گرفتن خانههای هوشمند ارائه شده است. در مدل پیشنهادی مشترکین خانههای هوشمند قادر به مشارکت در یک برنامه پاسخ گویی بار (DR) بوده و شاخص رفاه مشترکین به عنوان یک قید اصلی در نظر گرفته شده است. همچنین در مدل مذکور عدم قطعیتهای میزان تقاضای بار، میزان تولید منابع تجدیدپذیر و همچنین قیمت برق در نظر گرفته شدهاند. جهت تولید سناریوها از روش شبیهسازی مونت کارلو و جهت کاهش تعداد آنها نیز از الگوریتم ScenRed استفاده شده است. به منظور نزدیکی شرایط شبیهسازی به شرایط بهرهبرداری واقعی، در مدل تغییرات تقاضا و تولید فصلی در نظر گرفته شده و مسئله بهرهبرداری به صورت چهار فصل حل میشود. همچنین از یک برنامه پخش بار AC خطی شده در این مدل، استفاده شده است. مسئله نهایی به صورت یک مسئله برنامهریزی عدد صحیح مختلط مدل شده و توسط حلکننده CPLEX در نرمافزار گمز حل شده است. نتایج شبیهسازی نشان میدهند که مدل پیشنهادی، یک مدل جامع برای بهرهبرداری از سیستمهای توزیع در حضور خانههای هوشمند است، که نه تنها منجر به کاهش هزینههای بهرهبرداری میشود، بلکه شاخص رفاه مشترکین را نیز افزایش میدهد.
In this paper, a comprehensive energy management model is proposed in order to the operation of a modified 33-radial bus distribution system, in the presence of smart homes. In the proposed model, smart home customers are able to participate in a demand response (DR) program and their comfort index is also considered as the main constraint. The model also considers uncertainties related to the load demand, the generation of renewable energy resources and electricity price. The Monte Carlo simulation method and the ScenRed tool are utilized to generate and reduce the scenarios, respectively. In order to mimic the actual operating conditions, in the simulation, the seasonal variations of load and generation are considered and the operation problem is solved for four seasons. A linear AC power flow is also used in the model. Finally, the problem is modeled as a mixed-integer linear programming (MILP) problem and solved by the CPLEX solver in GAMS software. The simulation results demonstrate that the model proposed in this study is a comprehensive framework for the operation of distribution systems in the presence of smart homes, which not only reduces operating costs but also increases the consumers’ comfort index.
[1] G, Dileep, “A survey on smart grid technologies and applications”, Renewable Energy, vol. 146, pp. 2589-2625, Feb. 2020 (doi: 10.1016/j.renene.2019.08.092).
[2] Y. Yoldaş, A. Önen, S.M. Muyeen, A.V. Vasilakos, İ. Alan, “Enhancing smart grid with microgrids: Challenges and opportunities”, Renewable and Sustainable Energy Reviews, vol. 72, pp. 205-214, May 2017 (doi: 10.1016/j.rser.2017.01.064).
[3] Y. Li, X. Cheng, Y. Cao, D. Wang, L. Yang, “Smart choice for the smart grid: Narrowband internet of things (NB-IoT)”, IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1505-1515, June 2018 (doi: 10.1109/JIOT.2017.2781251).
[4] S. M. Amin, B.F. Wollenberg, "Toward a smart grid: power delivery for the 21st century”, IEEE Power and Energy Magazine, vol. 3, no. 5, pp. 34-41, Sept. 2005 (doi: 10.1109/MPAE.2005.1507024).
[5] H. Merdanoğlu, E. Yakıcı, O. T. Doğan, S. Duran, M. Karatas, "Finding optimal schedules in a home energy management system”, Electric Power Systems Research, vol. 182, Article Number: 106229, May 2020 (doi: 10.1016/j.epsr.2020.106229).
[6] P.S. Kumar, R. Chandrasena, V. Ramu, G. Srinivas, K.V.S.M. Babu, "Energy management system for small scale hybrid wind solar battery based microgrid”, IEEE Access, vol. 8, pp. 8336-8345, Jan. 2020 (doi: 10.1109/ACCESS.2020.2964052).
[7] T. Ahmad, H. Zhang, B. Yan, "A review on renewable energy and electricity requirement forecasting models for smart grid and buildings”, Sustainable Cities and Society, vol. 55, Article Number: 102052, April 2020 (doi: 10.1016/j.scs.2020.102052).
[8] L. Zhang, X. Hu, Z. Wang, J. Ruan, C. Ma, Z. Song, D.G. Dorrell, M.G. Pecht, “Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications”, Renewable and Sustainable Energy Reviews, vol. 139, Article Number: 110581, April 2021 (doi: 10.1016/j.rser.2020.110581).
[9] G. Yuan, Y. Gao, B. Ye, R. Huang, "Real-time pricing for smart grid with multi-energy microgrids and uncertain loads: a bilevel programming method”, International Journal of Electrical Power and Energy Systems, vol. 123, Article Number: 106206, Dec. 2020 (doi: 10.1016/j.ijepes.2020.106206).
[10] S. Dorahaki, R. Dashti, H.R. Shaker, "Optimal energy management in the smart microgrid considering the electrical energy storage system and the demand-side energy efficiency program”, Journal of Energy Storage, vol. 28, Article Number: 101229, April 2020 (doi: 10.1016/j.est.2020.101229).
[11] S. Aslam, A. Khalid, N. Javaid, "Towards efficient energy management in smart grids considering microgrids with day-ahead energy forecasting”, Electric Power Systems Research, vol. 182, Article Number: 106232, May 2020 (doi: 10.1016/j.epsr.2020.106232).
[12] S. Aznavi, P. Fajri, R. Sabzehgar, A. Asrari, "Optimal management of residential energy storage systems in presence of intermittencies”, Journal of Building Engineering, vol. 29, Article Number: 101149, May 2020 (doi: 10.1016/j.jobe.2019.101149).
[13] E.E. Elattar, S.K. ElSayed, "Probabilistic energy management with emission of renewable micro-grids including storage devices based on efficient salp swarm algorithm”, Renewable Energy, vol. 153, pp. 23-35, June 2020 (doi: 10.1016/j.renene.2020.01.144).
[14] X. Wu, X. Hu, X. Yin, S.J. Moura, "Stochastic optimal energy management of smart home with PEV energy storage”, IEEE Trans. on Smart Grid, vol. 9, no. 3, pp. 2065-2075, Sept. 2016 (doi: 10.1109/TSG.2016.2606442).
[15] S. Mansouri, A. Ahmarinejad, M. Ansarian, M. Javadi, J. Catalao, "Stochastic planning and operation of energy hubs considering demand response programs using Benders decomposition approach”, International Journal of Electrical Power and Energy Systems, vol. 120, Article Number: 106030, Sept. 2020 (doi: 10.1016/j.ijepes.2020.106030).
[16] F. Sheidaei, A. Ahmarinejad, "Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs”, International Journal of Electrical Power and Energy Systems, vol. 120, Article Number: 106047, Sept. 2020 (doi: 10.1016/j.ijepes.2020.106047).
[17] X. Wu, X. Hu, S. Moura, X. Yin, V. Pickert, "Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array”, Journal of Power Sources, vol. 333, pp. 203-212, Nov. 2016 (doi: 10.1016/j.jpowsour.2016.09.157).
[18] M.A. Hormozi, B.B. Firoozi, T. Niknam, "Bi-level energy management optimization in multi-area smart grids”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 42, pp. 29-40, May 2020 (dor: 20.1001.1.23223871.1399.11.42.3.4).
[19] S. Gorji, S. Zamanian, M. Moazzami, "Techno-economic and environmental base approach for optimal energy management of microgrids using crow search algorithm”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, pp. 49-68, Sept. 2020 (dor: 20.1001.1.23223871.1399.11.43.4.7).
[20] A.H. Sharifi, P. Maghouli, "Energy management of smart homes equipped with energy storage systems considering the PAR index based on real-time pricing”, Sustainable Cities and Society, vol. 45, pp. 579-587, Feb. 2019 (doi: 10.1016/j.scs.2018.12.019).
[21] J. Liu, X. Chen, H. Yang, Y. Li, "Energy storage and management system design optimization for a photovoltaic integrated low-energy building”, Energy, vol. 190, Article Number: 116424, Jan. 2020 (doi: 10.1016/j.energy.2019.116424).
[22] G.R. Aghajani, H.A. Shayanfar, H. Shayeghi, "Demand side management in a smart micro-grid in the presence of renewable generation and demand response”, Energy, vol. 126, pp. 622-637, May 2017 (doi: 10.1016/j.energy.2017.03.051).
[23] S.A. Mansouri, A. Ahmarinejad, E. Nematbakhsh, M.S. Javadi, A.R. Jordehi, J.P. Catalão, "Energy management in microgrids including smart homes: A multi-objective approach”, Sustainable Cities and Society, vol. 69, Article Number: 102852, June 2021 (doi: 10.1016/j.scs.2021.102852).
_||_