طراحی و ساخت یک ربات تمیز کننده صفحات خورشیدی بدون نیاز به آب و با قابلیت تنظیم ارتفاع
محورهای موضوعی : انرژی های تجدیدپذیرمحمدرضا میوه 1 , امیرحسین احمدی 2 , مجتبی پیشوایی 3
1 - دانشکده مهندسی برق- دانشگاه تفرش، تفرش، ایران
2 - دانشکده مهندسی برق- دانشگاه تفرش، تفرش، ایران
3 - دانشکده مهندسی برق- دانشگاه تفرش، تفرش، ایران
کلید واژه: بازده, انرژی های تجدید پذیر, ربات تمیزکننده, پنل های خورشیدی,
چکیده مقاله :
امروزه با رو به اتمام بودن سوخت های فسیلی، گرایش به سمت استفاده از انرژیهای تجدیدپذیر بیش از پیش شده است. در میان انواع منابع تولید انرژی تجدیدپذیر، نیروگاههای خورشیدی به دلایل فنی، زیست محیطی و اقتصادی از جایگاه مهمی برخوردار هستند. با این وجود، راندمان پنل های خورشیدی به دلایل مختلف در سطح بالایی قرار ندارند. در کنار استفاده از تجهیزات کنترلی پیشرفته مانند روشهای ردیابی نقطه حداکثر توان، پاک سازی سطح پنلهای خورشیدی یکی از بهترین و سادهترین روشهای بهبود راندمان تولید در این نیروگاهها است. در این مقاله، جهت افزایش بازدهی و عمر مفید صفحات خورشیدی، یک ربات هوشمند تمیزکننده صفحات خورشیدی با قابلیت تنظیم ارتفاع به کمک تکنولوژی چرخ تانک طراحی شده است. با توجه به جدی بودن مشکل کم آبی در کشور، طراحی این ربات بر اساس تکنیک تمیزکاری بدون آب صورت گرفته است. با توجه به اینکه ربات طراحی شده دارای سیستم مخابراتی بوده و قابلیت کنترل از راه دور را دارد، سرعت تمیز کاری در آن بسیار بالا بوده و نیازی به وجود اپراتور در آن نیست. نرم افزار اختصاصی به کار رفته در ربات، برنامهریزی زمان بندی شده ای را جهت تمیزکاری دوره ای در ربات فراهم می کند. علاوه بر مزایای ذکر شده، ربات پیشنهادی نسبت به تمامی نمونه محصولات خارجی قیمت بسیار کمتری دارد. عملکرد این ربات بر روی نیروگاه خورشیدی پنج کیلواتی دانشگاه تفرش مورد ارزیابی قرار گرفته است. افزایش بازده تولید نیروگاه، درآمد بیشتر ناشی از فروش انرژی به شبکه، عدم استفاده از اپراتور و صرفه جویی قابل توجه در مصرف آب از مزایای اصلی این ربات هستند.
Today, with the depletion of fossil fuels, the trend towards using renewable energies has increased. Among the various types of renewable energy resources, solar systems received more attention due to technical, environmental and economic reasons. However, the efficiency of solar panels is not high due to several reasons. In addition to using high-efficiency control equipment such as maximum power point tracking (MPPT) methods, cleaning the surface of solar panels is one of the best and easiest ways to improve their efficiency and performance. In this paper, to increase the efficiency of solar panels, a robot for cleaning solar panels with the ability to adjust the height with the help of tank wheel technology has been developed. Moreover, due to water shortages in the country, the design of this robot has been done without the use of water. Considering that the designed robot has a telecommunication system with remote control capability, the speed of cleaning is very high and there is no need for the operator. The used software in the robot provides proper scheduling for the cleaning of solar panels. In addition to the aforementioned advantages, the proposed robot has a much lower price than foreign products. The performance of this robot on the five kW solar power plant of Tafresh University has been evaluated. Increasing the efficiency of the power plant, more revenue from the sale of energy to the grid and significant savings in water consumption are the main advantages of this intelligent robot.
[1] O.D.T. Odou, R. Bhandari, R. Adamou, "Hybrid off-grid renewable power system for sustainable rural electrification in Benin", Renewable Energy, vol. 145, pp. 1279-1266, Jan. 2020 (doi: 10.1016/j.renene.2019.06.032).
[2] M.R. Miveh, M.F. Rahmat, A.A. Ghadimi, M.W. Mustafa, "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review", Renewable and Sustainable Energy Reviews, vol. 54, pp. 1592-1610, Feb. 2016 (doi: 10.1016/j.rser.2015.10.079).
[3] M.J. Hadidian Moghaddam, A. Kalam, M.R. Miveh, A. Naderipour, F.H. Gandoman, A.A. Ghadimi, Z. Abdul-Malek, "Improved voltage unbalance and harmonics compensation control strategy for an isolated microgrid", Energies, vol. 11, no. 10, Article Number: 2688, Oct. 2018 (doi.org/10.3390/en11102688).
[4] M. Anderson, A. Grandy, J. Hastie, A. Sweezey, R. Ranky, C. Mavroidis, Y. Markopoulos, "Robotic device for cleaning photovoltaic panel arrays", Mobile Robotics, pp. 367-377, Sept. 2010 (doi: 10.1142/9789814291279_0047).
[5] M.T. Grando, E.R. Maletz, D. Martins, H. Simas, R. Simoni, "Robots for cleaning photovoltaic panels: State of the art and future prospects", Revista Tecnología Y Ciencia, no. 35, pp.137-150, Nov. 2019 (doi: 10.33414/RTYC.35.137-150.2019).
[6] P. Patil, J. Bagi, M. Wagh, "A review on cleaning mechanism of solar photovoltaic panel", Proceeding of the IEEE/ICECDS, pp. 250-256, Chennai, India, Aug. 2017 (doi: 10.1109/ICECDS.2017.8389895).
[7] A.K. Mondal, K. Bansal, "A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels", Advanced Robotics, vol. 29, no. 8, pp. 515-524, April 2015 (doi: 10.1080/01691864.2014.996602).
[8] K. Moharram, M. Abd-Elhady, H. Kandil, H. El-Sherif, "Influence of cleaning using water and surfactants on the performance of photovoltaic panels", Energy Conversion and Management, vol. 68, pp. 266-272, April 2013 (doi: 10.1016/j.enconman.2013.01.022).
[9] A. Syafiq, A. Pandey, N. Adzman, N.A. Rahim, "Advances in approaches and methods for self-cleaning of solar photovoltaic panels", Solar Energy, vol. 162, pp. 597-612, March 2018 (doi: 10.1016/j.solener.2017.12.023).
[10] K. Ilse, L. Micheli, B.W. Figgis, K. Lange, D. Daßler, H. Hanifi, F. Wolfertstetter, V. Naumann, C. Hagendorf, R. Gottschalg, J. Bagdahn, "Techno-economic assessment of soiling losses and mitigation strategies for solar power generation", Joule, vol. 3, no. 10, pp.2303-2321, Oct. 2019 (doi: 10.1016/j.joule.2019.08.019).
[11] M. Burke, R. Greenough, D. Jensen, E. Voss, "Project SPACE: Solar Panel Automated Cleaning Environment", Mechanical Engineering Senior Theses. 62, 2016.
[12] N. M. Kumar, K. Sudhakar, M. Samykano, S. Sukumaran, "Dust cleaning robots (DCR) for BIPV and BAPV solar power plants-A conceptual framework and research challenges", Procedia Computer Science, vol. 133, pp.746-754, July 2018 (doi: 10.1016/j.procs.2018.07.123).
[13] D. Deb, N.L. Brahmbhatt, "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution", Renewable and Sustainable Energy Reviews, vol. 82, pp. 3306-3313, Feb. 2018 (doi:10.1016/j.rser.2017.10.014).
[14] R. Zahedi, P. Ranjbaran, G.B. Gharehpetian, F. Mohammadi, R. Ahmadiahangar, "Cleaning of floating photovoltaic systems: A critical review on approaches from technical and economic perspectives", Energies, vol. 14, no. 7, pp. 2018, April 2021 (doi:10.3390/en14072018).
[15] S. Yan, Y. Jian, L. Xu, "Research on design of intelligent cleaning robot for solar panel", ICEB 2020 Proceedings (Hong Kong, SAR China). 22, 2020.
[16] B. Parrott, P. C. Zanini, A. Shehri, K. Kotsovos, I. Gereige, "Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush", Solar Energy, vol. 171, pp. 526-533, Sept. 2018 (doi:10.1016/j.solener.2018.06.104).
[17] A. Al Baloushi, M. Saeed, S. Marwan, S. AlGghafri, Y. Moumouni, "Portable robot for cleaning photovoltaic system: Ensuring consistent and optimal year-round photovoltaic panel performance", Proceeding of the IEEE/ASET, pp. 1-4, Dubai, Sharjah, Abu Dhabi, United Arab Emirates, April 2018 (doi: 10.1109/ICASET.2018.8376781).
[18] F. Hajiahmadi, P. Zarafshan, M. Dehghani, S.A.A. Moosavian, R. Hassanbeigi, "Dynamic modeling and control of cleaning robot for agro-photovoltaic", Amirkabir Journal of Mechanical Engineering, vol. 53, no. 6, pp. 3, Sept. 2021 (doi: 10.22060/MEJ.2021.18404.6810).
[19] M.A. Jaradat, M. Tauseef, Y. Altaf, R. Saab, H. Adel, N. Yousuf, Y.H. Zurigat, "A fully portable robot system for cleaning solar panels", Proceeding of the IEEE/ISMA, pp. 1-6, Sharjah, United Arab Emirates, Dec. 2015 (doi: 10.1109/ISMA.2015.7373479).
[20] A. Gheitasi, A. Almaliky, N. Albaqawi, "Development of an automatic cleaning system for photovoltaic plants", Proceeding of the IEEE/APPEEC, pp. 1-4, Brisbane, QLD, Australia, Nov. 2015 (doi: 10.1109/APPEEC.2015.7380938).
[21] N. Savani, Z. Korat, H. Kikani, C. Khunt, "Design and analysis of integrated solar panel cleaning system", International Research Journal of Engineering and Technology, vol. 6, no. 4, pp. 2164-2168, April 2019 (doi: 10.1109/MNM.2019.7380).
[22] M. Vaghani, J. Magtarpara, K. Vahani, J. Maniya, R.K. Gurjwar, "Automated solar panel cleaning system using IoT", International Research Journal of Engineering and Technology, vol. 6, no. 4, pp. 1392-1395, April 2019 (doi: 10.1109/ IRJET.2019.7380).
[23] S. Shongwe, M. Hanif, "Comparative analysis of different single-diode PV modeling methods", IEEE Journal of Photovoltaics, vol. 5, no. 3, pp. 938-946, May 2015 (doi: 10.1109/JPHOTOV.2015.2395137).
[24] S. Dadfar, K. Wakil, M. Khaksar, A. Rezvani, M.R. Miveh, M. Gandomkar, "Enhanced control strategies for a hybrid battery/photovoltaic system using FGS-PID in grid-connected mode", International Journal of Hydrogen Energy, vol. 44, no. 29, pp. -642-660, June 2019 (doi:10.1016/j.ijhydene.2019.04.174).
[25] P.P. Acarnley, "Stepping motors: a guide to theory and practice", IET, 4th Edition, Chapter: 9, 2002 (doi: 10.1049/pbce063e).
[26] T. Das, I.N. Kar, S. Chaudhury, "Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics”, Neurocomputing, vol. 69, no. 16-18, pp. 2140-2151, Oct. 2006 (doi: 10.1016/j.neucom.2005.09.013).
_||_[1] O.D.T. Odou, R. Bhandari, R. Adamou, "Hybrid off-grid renewable power system for sustainable rural electrification in Benin", Renewable Energy, vol. 145, pp. 1279-1266, Jan. 2020 (doi: 10.1016/j.renene.2019.06.032).
[2] M.R. Miveh, M.F. Rahmat, A.A. Ghadimi, M.W. Mustafa, "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review", Renewable and Sustainable Energy Reviews, vol. 54, pp. 1592-1610, Feb. 2016 (doi: 10.1016/j.rser.2015.10.079).
[3] M.J. Hadidian Moghaddam, A. Kalam, M.R. Miveh, A. Naderipour, F.H. Gandoman, A.A. Ghadimi, Z. Abdul-Malek, "Improved voltage unbalance and harmonics compensation control strategy for an isolated microgrid", Energies, vol. 11, no. 10, Article Number: 2688, Oct. 2018 (doi.org/10.3390/en11102688).
[4] M. Anderson, A. Grandy, J. Hastie, A. Sweezey, R. Ranky, C. Mavroidis, Y. Markopoulos, "Robotic device for cleaning photovoltaic panel arrays", Mobile Robotics, pp. 367-377, Sept. 2010 (doi: 10.1142/9789814291279_0047).
[5] M.T. Grando, E.R. Maletz, D. Martins, H. Simas, R. Simoni, "Robots for cleaning photovoltaic panels: State of the art and future prospects", Revista Tecnología Y Ciencia, no. 35, pp.137-150, Nov. 2019 (doi: 10.33414/RTYC.35.137-150.2019).
[6] P. Patil, J. Bagi, M. Wagh, "A review on cleaning mechanism of solar photovoltaic panel", Proceeding of the IEEE/ICECDS, pp. 250-256, Chennai, India, Aug. 2017 (doi: 10.1109/ICECDS.2017.8389895).
[7] A.K. Mondal, K. Bansal, "A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels", Advanced Robotics, vol. 29, no. 8, pp. 515-524, April 2015 (doi: 10.1080/01691864.2014.996602).
[8] K. Moharram, M. Abd-Elhady, H. Kandil, H. El-Sherif, "Influence of cleaning using water and surfactants on the performance of photovoltaic panels", Energy Conversion and Management, vol. 68, pp. 266-272, April 2013 (doi: 10.1016/j.enconman.2013.01.022).
[9] A. Syafiq, A. Pandey, N. Adzman, N.A. Rahim, "Advances in approaches and methods for self-cleaning of solar photovoltaic panels", Solar Energy, vol. 162, pp. 597-612, March 2018 (doi: 10.1016/j.solener.2017.12.023).
[10] K. Ilse, L. Micheli, B.W. Figgis, K. Lange, D. Daßler, H. Hanifi, F. Wolfertstetter, V. Naumann, C. Hagendorf, R. Gottschalg, J. Bagdahn, "Techno-economic assessment of soiling losses and mitigation strategies for solar power generation", Joule, vol. 3, no. 10, pp.2303-2321, Oct. 2019 (doi: 10.1016/j.joule.2019.08.019).
[11] M. Burke, R. Greenough, D. Jensen, E. Voss, "Project SPACE: Solar Panel Automated Cleaning Environment", Mechanical Engineering Senior Theses. 62, 2016.
[12] N. M. Kumar, K. Sudhakar, M. Samykano, S. Sukumaran, "Dust cleaning robots (DCR) for BIPV and BAPV solar power plants-A conceptual framework and research challenges", Procedia Computer Science, vol. 133, pp.746-754, July 2018 (doi: 10.1016/j.procs.2018.07.123).
[13] D. Deb, N.L. Brahmbhatt, "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution", Renewable and Sustainable Energy Reviews, vol. 82, pp. 3306-3313, Feb. 2018 (doi:10.1016/j.rser.2017.10.014).
[14] R. Zahedi, P. Ranjbaran, G.B. Gharehpetian, F. Mohammadi, R. Ahmadiahangar, "Cleaning of floating photovoltaic systems: A critical review on approaches from technical and economic perspectives", Energies, vol. 14, no. 7, pp. 2018, April 2021 (doi:10.3390/en14072018).
[15] S. Yan, Y. Jian, L. Xu, "Research on design of intelligent cleaning robot for solar panel", ICEB 2020 Proceedings (Hong Kong, SAR China). 22, 2020.
[16] B. Parrott, P. C. Zanini, A. Shehri, K. Kotsovos, I. Gereige, "Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush", Solar Energy, vol. 171, pp. 526-533, Sept. 2018 (doi:10.1016/j.solener.2018.06.104).
[17] A. Al Baloushi, M. Saeed, S. Marwan, S. AlGghafri, Y. Moumouni, "Portable robot for cleaning photovoltaic system: Ensuring consistent and optimal year-round photovoltaic panel performance", Proceeding of the IEEE/ASET, pp. 1-4, Dubai, Sharjah, Abu Dhabi, United Arab Emirates, April 2018 (doi: 10.1109/ICASET.2018.8376781).
[18] F. Hajiahmadi, P. Zarafshan, M. Dehghani, S.A.A. Moosavian, R. Hassanbeigi, "Dynamic modeling and control of cleaning robot for agro-photovoltaic", Amirkabir Journal of Mechanical Engineering, vol. 53, no. 6, pp. 3, Sept. 2021 (doi: 10.22060/MEJ.2021.18404.6810).
[19] M.A. Jaradat, M. Tauseef, Y. Altaf, R. Saab, H. Adel, N. Yousuf, Y.H. Zurigat, "A fully portable robot system for cleaning solar panels", Proceeding of the IEEE/ISMA, pp. 1-6, Sharjah, United Arab Emirates, Dec. 2015 (doi: 10.1109/ISMA.2015.7373479).
[20] A. Gheitasi, A. Almaliky, N. Albaqawi, "Development of an automatic cleaning system for photovoltaic plants", Proceeding of the IEEE/APPEEC, pp. 1-4, Brisbane, QLD, Australia, Nov. 2015 (doi: 10.1109/APPEEC.2015.7380938).
[21] N. Savani, Z. Korat, H. Kikani, C. Khunt, "Design and analysis of integrated solar panel cleaning system", International Research Journal of Engineering and Technology, vol. 6, no. 4, pp. 2164-2168, April 2019 (doi: 10.1109/MNM.2019.7380).
[22] M. Vaghani, J. Magtarpara, K. Vahani, J. Maniya, R.K. Gurjwar, "Automated solar panel cleaning system using IoT", International Research Journal of Engineering and Technology, vol. 6, no. 4, pp. 1392-1395, April 2019 (doi: 10.1109/ IRJET.2019.7380).
[23] S. Shongwe, M. Hanif, "Comparative analysis of different single-diode PV modeling methods", IEEE Journal of Photovoltaics, vol. 5, no. 3, pp. 938-946, May 2015 (doi: 10.1109/JPHOTOV.2015.2395137).
[24] S. Dadfar, K. Wakil, M. Khaksar, A. Rezvani, M.R. Miveh, M. Gandomkar, "Enhanced control strategies for a hybrid battery/photovoltaic system using FGS-PID in grid-connected mode", International Journal of Hydrogen Energy, vol. 44, no. 29, pp. -642-660, June 2019 (doi:10.1016/j.ijhydene.2019.04.174).
[25] P.P. Acarnley, "Stepping motors: a guide to theory and practice", IET, 4th Edition, Chapter: 9, 2002 (doi: 10.1049/pbce063e).
[26] T. Das, I.N. Kar, S. Chaudhury, "Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics”, Neurocomputing, vol. 69, no. 16-18, pp. 2140-2151, Oct. 2006 (doi: 10.1016/j.neucom.2005.09.013).