تحلیل و طراحی یک مبدل افزاینده DC-DC بدون صفر نیم صفحه سمت راست با پاسخ دینامیکی سریع
محورهای موضوعی : انرژی های تجدیدپذیرمحمد جواد کارگران 1 , مهدی شانه 2 , توحید نوری 3
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - گروه مهندسی برق- واحد ساری، دانشگاه ازاد اسلامی، ساری، ایران
کلید واژه: مبدل DC-DC, مبدل بسیار افزاینده, پاسخ دینامیکی, صفر نیم صفحه سمت راست,
چکیده مقاله :
با افزایش اهمیت استفاده از انرژیهای نو در جهت کاهش اثرات منفی حاصل از سوختن مواد فسیلی برای تامین انرژی الکتریکی مورد نیاز، استفاده از مبدلهای الکترونیک قدرت اهمیت زیادی پیدا کرده است. با توجه تغییرات ناگهانی بار یا سطح ولتاژ ورودی، مبدل مورد استفاده باید به عنوان یک تنظیم کننده ولتاژ، در محدوده خاصی از تغییرات ولتاژ خروجی به سرعت به مقدار مرجع خود بازگردد. در این مبدلها باید رفتار دینامیک آنها مورد تحلیل قرار بگیرد و سرعت پاسخ آن نسبت به هر تداخلی مورد بحث قرار گرفته شود. از آنجا که مبدلهای افزاینده پایه در تابع تبدیل خود دارای یک تاخیر ناشی از صفر نیم-صفحه سمت راست هستند، به کارگیری ساختارهایی با رویکرد حذف این تاخیر قابل ملاحظه است. استفاده از سلف تزویج در مدارهای غیر ایزوله از ساختارهای قابل تعمیم در این زمینه است که علاوه بر حذف صفر نیم-صفحه سمت راست از تابع تبدیل باعث افزایش بهره ولتاژ، کاهش تنش ولتاژ روی نیمه هادیهای مدار میگردد. در این مقاله یک ساختار جدید مبتنی بر سلف کوپل شده در جهت حذف صفر نیم-صفحه سمت راست ارائه شده است. ساختار جدید با یک افزایش بهره همراه خواهد بود. اما تنش ولتاژ روی کلید محدود شده است و از طرفی با توجه به موقعیت سلف کوپل شده ریپل جریان ورودی برای این ساختار به حداقل خواهد رسید.
By increasing use of new energy to reduce the negative effects of burning fossil fuels to supply electricity, the need for power electronic converters have become very important. Due to sudden changes in load or input voltage level, the converter used as a voltage regulator in a certain range of output voltage changes should quickly return to its reference value, which should analyze the dynamic behavior of these converters and the speed of its dynamic response to any interference is discussed. Because the initial boost converter has a delay in its transfer function due to the right half plane zero, it is possible to use structures to eliminate this delay. The use of coupled inductor in non-insulated structures is one of the structures that can be repaired in this field, which in addition to removing right half plan zero of the transfer function, increases voltage gain, reduces voltage stress on circuit semiconductors. In this paper, a new coupled inductor structure is proposed to remove the right half plan zero. The new structure will be accompanied by an increase in gain, but the voltage stress on the switch is limited, and on the other hand, due to the position of the coupled inductor, the input current for this structure will be minimized.
[1] T. Nouri, M. Shaneh, "New interleaved high step-up converter based on a voltage multiplier cell mixed with magnetic devices", IET Power Electronics, vol. 13, no. 17, p. 4089–4097, Dec. 2020 (doi: 10.1049/iet-pel.2020.0591).
[2] R. Middlebrook, "Transformerless dc-to-dc converters with large conversion ratios", IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 484-488, Oct. 1988 (doi: 10.1109/63.17970).
[3] H. Matsuo, K. Harada, "The cascade connection of switching regulators", IEEE Trans. on Industry Applications, vol. IA-12, no. 2, pp. 192-198, March 1976 (doi: 10.1109/TIA.1976.349401).
[4] W. Li, W. Li, Y. Deng, X. He, "Single-stage single-phase high-step-Up ZVT boost converter for fuel-cell microgrid system", IEEE Trans. on Power Electronics, vol. 25, no. 12, pp. 3057-3065, Dec. 2010 (doi: 10.1109/TPEL.2010.2079955).
[5] W. Qian, H. Cha, F.Z. Peng, L.M. Tolbert, "55-kW variable 3X dc-dc converter for plug-in hybrid electric vehicles", IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1668-1678, April 2012 (doi: 10.1109/TPEL.2011.2165559).
[6] T. Nouri, M. Shaneh, A. Ghorbani, "Interleaved high step-up ZVS dc-dc converter with coupled inductor and built-in transformer for renewable energy systems applications", IET Power Electronics, vol. 13, no. 16, pp. 3537-3548, Dec. 2020 (doi: 10.1049/iet-pel.2020.0162).
[7] H. Chung, S. Hui, K. Tse, "Reduction of power converter EMI emission using soft-switching technique", IEEE Trans. on Electromagnetic Compatibility, vol. 40, no. 3, pp. 282-287, Aug. 1998 (doi: 10.1109/15.709428).
[8] T.T. Song, H.S. Chung, "Boundary control of boost converters using state-energy plane", IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 551-563, 2008 (DOI: 10.1109/TPEL.2007.915765).
[9] K.I. Hwu, Y.T. Yau, "KY converter and its derivatives", IEEE Trans. on Power Electronics, vol. 24, no. 1, pp. 128-137, Jan. 2009 (doi: 10.1109/TPEL.2008.2009178).
[10] A. Mostaan, E. Alizadeh, M. Soltani, "Novel step-up DC/DC converter with no right half plane zero and reduced switched voltage stress characteristics", Proceeding of the IEEE/INTELEC, pp. 1-7, Vancouver, BC, Canada, Sept./Oct. 2014 (doi: 10.1109/INTLEC.2014.6972175).
[11] K. Viswanathan, R. Oruganti, D. Srinivasan, "A novel tri-state boost converter with fast dynamics", IEEE Trans. on Power Electronics, vol. 17, no. 5, pp. 677 - 683, Sept. Sept. 2002 (doi: 10.1109/TPEL.2002.802197).
[12] N. Rana, M. Kumar, A. Ghosh, S. Banerjee, "A novel interleaved tri-state boost converter with lower ripple and improved dynamic response", IEEE Trans. on Industrial Electronics, vol. 65, no. 7, pp. 5456-5465, July 2018 (doi: 10.1109/TIE.2017.2774775).
[13] M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, B. Lehman, "Step-up dc–dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE on Power Electronics, vol. 32, no. 12, pp. 9143-9178, Dec. 2017(doi: 10.1109/TPEL.2017.2652318).
[14] R.W.M.D. Erickson, “Fundamentals of power electronics”, New York: Norwell, Massachusetts: Kluwer Academic, ©2001, 2001.
[15] J. Doyle, B. Francis, A. Tannenbaum, “Feedback control theory”, New York: Macmillan, 1990.
[16] J. Calvente, L. Martinez-Salamero, H. Valderrama, E. Vidal-Idiarte, "Using magnetic coupling to eliminate right half-plane zeros in boost converters", IEEE Power Electronics Letters, vol. 2, no. 2, pp. 58-62, June 2004 (doi: 10.1109/LPEL.2004.834615).
[17] B. Poorali, E. Adib, "Right-half-plane zero elimination of boost converter using magnetic coupling with forward energy transfer", IEEE Trans. on Industrial Electronics, vol. 66, no. 11, pp. 8454-8462, Nov. 2019 (doi: 10.1109/TIE.2019.2891408).
[18] K.B. Park, G.W. Moon, M.J. Youn, "High step-up boost converter integrated wit a transformer-assisted auxiliary circuit employing quasi-resonant operation", IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1974-1984, April 2012 (doi: 10.1109/TPEL.2011.2170223).
[19] X. Hu, C. Gong, "A high voltage gain dc–dc converter integrating coupled-inductor and diode–capacitor techniques", IEEE Trans. on Power Electronics, vol. 29, no. 2, pp. 789-800, Feb. 2014 (doi: 10.1109/TPEL.2013.2257870).
[20] S. Chen, T. Liang, L. Yang, J. Chen, "A cascaded high step-up dc–dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146-1153, April 2011 (doi: 10.1109/TPEL.2010.2090362).
[21] K. Park, G. Moon, M. Youn, "Nonisolated high step-up boost converter integrated with sepic converter", IEEE Trans. on Power Electronics, vol. 25, no. 9, pp. 2266-2275, Sept. 2010 (doi: 10.1109/TPEL.2010.2046650).
_||_