بهرهبرداری ریزشبکه در راستای تأمین انرژی پاک مقید به قابلیت اطمینان بهینه سیستم
محورهای موضوعی : انرژی های تجدیدپذیرحسین حسن شاهی 1 , مهدی نفر 2 , محسن سیماب 3
1 - گروه مهندسی برق- واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، فارس، ایران
2 - گروه مهندسی برق- واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، فارس، ایران
3 - گروه مهندسی برق- واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، فارس، ایران
کلید واژه: الگوریتم تکاملی ترکیبی, بهرهبرداری ریزشبکه, تأمین انرژی پاک, قابلیت اطمینان ریزشبکه,
چکیده مقاله :
در این مقاله، مسأله مدیریت انرژی ریزشبکه (MG) در حضور تولیدات پراکنده (DGها) و بارهای اکتیو (ALها) با در نظر گرفتن شاخص های بهره برداری، اقتصادی، زیست محیطی و قابلیت اطمینان ارائه می شود. این طرح دارای تابع هدفی برابر با کمینه سازی مجموع هزینه مورد انتظار بهره برداری MG و DGها، هزینه مورد انتظار آلودگی و هزینه خاموشی در شرایط وقوع پشامد N-1 است. این مسأله نیز مقید به معادلات پخش توان ac، محدودیت های بهره برداردی و قابلیت اطمینان MG و فرمول بندی بهره برداری DGها و ALها شامل طرح پاسخ گویی بار (DRP) و باتری است. همچنین از برنامه ریزی تصادفی برای مدل سازی عدم قطعیت های بار، قیمت انرژی، توان تولیدی DGهای تجدیدپذیر (RDGها) و دسترس پذیری تجهیزات MG استفاده می شود. سپس برای دست یابی به راه حل بهینه مطمئن با قابلیت پاسخ دهی یکتا، از حل کننده ترکیبی بهینه سازی شیر مورچه (ALO) و الگوریتم جستجوی کلاغ (CSA) استفاده می گردد. در نهایت با اجرای طرح پیشنهادی بر روی یک MG استاندارد و استخراج نتایج عددی حاصل از موارد مطالعاتی مختلف، قابلیت طرح مذکور در بهبود وضعیت شاخص های بهره برداری و اقتصادی MG در کنار تأمین انرژی پاک با قابلیت اطمینان مطلوب مورد تأیید قرار می گیرد.
In this paper, the problem of micro-grid (MG) energy management in the presence of distributed generations (DGs) and active loads (ALs) considering operation, economic, pollution and reliability is presented. This scheme includes objective function that is minimized the summation of expected operation cost of MG and DGs, expected pollution cost and outage cost in the N-1 contingency. This problem is constrained to AC power flow equations, MG operation and reliability limits, and operation formulation of DGs and ALs including the demand response program (DRP) and battery. Also, this paper uses the stochastic programming to model uncertainties of load, energy price, renewable DGs (RDGs) generation power and Availability of MG Equipment. Then, to achieve unique reliable optimal solution, it uses hybrid solver of ant-lion optimizer (ALO) and crow search algorithm (CSA). Finally, by implementing of the proposed strategy on a standard MG and obtain numerical results, the capability of the scheme in improving technical and economic indices of the MG along with procuring clean and reliable energy is confirmed.
[1] A. Shahbazi, J. Aghaei, S. Pirouzi, M.R. Shafie-khah, J.P.S. Catalão, “Hybrid stochastic/robust optimization model for resilient architecture of distribution networks against extreme weather conditions”, International Journal of Electrical Power and Energy Systems, vol. 126, Article Number: 106576, March 2021 (doi: 10.1016/j.ijepes.2020.106576).
[2] A. Shahbazi, J. Aghaei, S. Pirouzi, T. Niknam, M. Shafie-khah, J.P.S. Catalão, “Effects of resilience-oriented design on distribution networks operation planning”, Electric Power Systems Research, vol. 191, Article Number: 106902, Feb. 2021 (doi: 10.1016/j.epsr.2020.106902).
[3] S.A. Bozorgavari, J. Aghaei, S. Pirouzi, V. Vahidinasab, H. Farahmand, M. Korpås, “Two-stage hybrid stochastic/robust optimal coordination of distributed battery storage planning and flexible energy management in smart distribution network”, Journal of Energy Storage, vol. 26, Article Number: 100970, Sept. 2019 (doi: 10.1016/j.est.2019.100970)
[4] H.R. Zafarani, S.A. Taher, M. Shahidehpour, “Robust operation of a multicarrier energy system considering EVs and CHP units”, Energy, vol. 192, Article Number: 116703, Feb. 2020 (doi: 10.1016/j.energy.2019.116615).
[5] K. Afrashi, B. Bahmani-Firouzi, M. Nafar, “IGDT-based robust optimization for multicarrier energy system management”, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, pp. 1-15, March 2021 (doi: 10.1007/s40998-020-00356).
[6] M.A. Norouzi, J. Aghaei , S. Pirouzi, T. Niknam, M. Lehtonen, “Flexible operation of grid-connected microgrid using ES”, IET Generation, Transmission and Distribution, vol. 14, no. 2, pp. 254-264, Nov. 2019 (doi: 10.1049/iet-gtd.2019.0483).
[7] S. Pirouzi, J. Aghaei, T. Niknam, H. Farahmand, M. Korpås, “Exploring prospective benefits of electric vehicles for optimal energy conditioning in distribution networks”, Energy, vol. 157, pp. 679-689, Aug. 2018. (doi: 10.1016/j.energy.2018.05.195)
[8] D. Chattopadhyay, "Application of general algebraic modeling system to power system optimization", IEEE Trans. on Power Systems, vol. 14, no. 1, pp. 15-22, Feb. 1999 (doi: 10.1109/59.744462).
[9] J.J. Das, D. Das, “Scenario-based multi-objective optimisation with loadability in islanded microgrids considering load and renewable generation uncertainties”, IET Renewable Power Generation, vol. 13, no. 5, pp. 785-800, April 2019 (doi: 10.1049/iet-rpg.2018.5795).
[10] L. Ma, N. Liu, J. Zhang, W. Tushar, C. Yuen “Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach”, IEEE Trans. on Industrial Informatics, vol. 12, no. 5, pp. 1930-1942, Oct. 2016 (doi: 10.1109/TII.2016.2578184).
[11] X. Li, R. Xia, “A dynamic multi-constraints handling strategy for multi-objective energy management of microgrid based on MOEA”, IEEE Access, vol. 7, pp. 138732-138744, 2019 (doi: 10.1109/ACCESS.2019.2943201).
[12] M. Roustaee, A. Kazemi, “Multi-objective stochastic operation of multi-microgrids constrained to system reliability and clean energy based on energy management system”, Electric Power Systems Research, vol. 194, Article Number: 106970, May 2021 (doi: 10.1186/s41601-019-0147).
[13] Z. Yang, M. Ghadamyari, H. Khorramdel, S.M. Seyed Alizadehd, S. Pirouzi, M. Milani, F. Banihashemi, N. Ghadimi, “Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems”, Renewable and Sustainable Energy Reviews, vol. 148, Article Number: 111295, Sept. 2021 (doi: 10.1016/j.rser.2021.111295).
[14] S. Katoch, S.S. Chauhan, V. Kumar, “A review on genetic algorithm: past, present, and future”, Multimed Tools and Applications, vol. 80, pp. 8091–8126, 2021 (doi:10.1007/s11042-020-10139-6).
[15] M. Nazari-Heris, S. Abapour, B. Mohammadi-Ivatloo, “Optimal economic dispatch of FC-CHP based heat and power micro-grids”, Applied Thermal Engineering, vol. 114, pp. 756-769, 2017 (doi: 10.1016/j.applthermaleng.2016.12.016)
[16] A. Dini, S. Pirouzi, M.A. Norouzi, M. Lehtonen, “Grid-connected energy hubs in the coordinated multi-energy management based on day-ahead market framework”, Energy, vol. 188, Article Number: 11605, Dec. 2019 (doi: 10.1016/j.energy.2019.116055).
[17] A. Kavousi-Fard, A. Khodaei, “Efficient integration of plug-in electric vehicles via reconfigurable microgrids”, Energy, vol. 111, pp. 653-663, 2016 (doi: 10.1016/j.energy.2016.06.018)
[18] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm”, Computers and Structures, vol. 169, pp. 1-12, June 2016 (doi: 10.1016/j.epsr.2020.106970).
[19] M. Roustaee, A. Kazemi, “Multi-objective stochastic operation of multi-microgrids constrained to system reliability and clean energy based on energy management system”, Electric Power Systems Research, vol. 194, May 2021 (doi: 10.1016/j.epsr.2020.106970).
[20] M.Q. Duong, T.D. Pham, T.T. Nguyen, A.T. Doan, H.V. Tran, “Determination of optimal location and sizing of solar photovoltaic distribution generation units in radial distribution systems”, Energies, vol. 12, no. 1, pp. 1-25, Jan. 2019 (doi: 10.3390/en12010174).
[21] S. Papathanassiou, N. Hatziargyriou, K. Strunz, “A benchmark low voltage microgrid network”, Proceedings of the CIGRE Symposium: Power Systems with Dispersed Generation, pp. 1-8, Jan. 2005.
[22] H.S. Gilla, B.S. Khehrab, A. Singhc, L.Kaur, “Teaching-learning-based optimization algorithm to minimize cross entropy for Selecting multilevel threshold values”, Egyptian Informatics Journal, vol. 20, pp. 11-25, 2019 (doi: 10.1109/ICECCE52056.2021.9514174).
[23] F.R. Zaro, S.J. Alqam, "Notice of violation of ieee publication principles: solving dynamic load economic dispatch using GAMS optimization algorithm", Proceeding of the IEEE/JEEIT, pp. 866-871, Amman, Jordan, April 2019 (doi: 10.1109/JEEIT.2019.8717534).
_||_