طراحی یک مبدل بسیار افزاینده DC-DC مبتنی بر شبکه شبه امپدانس با تنش ولتاژ کم، با به کارگیری تکنیک سلف کوپل شده
محورهای موضوعی : انرژی های تجدیدپذیرحسین جعفری 1 , مهدی شانه 2 * , توحید نوری 3
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - گروه مهندسی برق- واحد ساری، دانشگاه ازاد اسلامی، ساری، ایران
کلید واژه: شبکه شبه امپدانس, سلول افزاینده ولتاژ, خازن استک شده, سلف کوپل شده,
چکیده مقاله :
ساختارهای بسیار افزاینده عموماً برای ارتقاء سطح ولتاژ پایین تولید شده توسط منابع انرژی تجدید پذیر به کار گرفته میشوند. در این مقاله یک ساختار بسیار افزاینده مبتنی بر شبکه شبه امپدانس ارائه شده است، که دارای ساختاری ساده و در عین حال کاربردی متشکل از دو سلف و خازن میباشد. با توجه به ضریب وظیفه در محدوده ۵۰ درصد برای این مبدل مشکلات بازیابی معکوس دیودها و پایدارسازی مبدل برطرف میگردد. از طرفی زمین مشترک کلید قدرت و منبع ورودی باعث سادگی مدار کنترل میشود. با بهره گیری از تکنیک سلف کوپل شده و همچنین سلول چند برابر کننده ولتاژ، بهره ولتاژ مبدل به مقدار چشمگیری افزایش می یابد. علاوه بر آن در جهت محدود کردن تنش ولتاژ روی کلید، از خازن استک شده استفاده شده است. استفاده از ساختار پیشنهادی باعث افزایش بهره ولتاژ مبدل میگردد. همچنین ساختار ارائه شده سطح تنش ولتاژ روی نیمه هادیهای مدار را کاهش میدهد که باعث کاهش هزینه و افزایش راندمان مدار میگردد. مبدل طراحی شده با ولتاژ ورودی 25 ولت و ولتاژ خروجی400 ولت و توان 100 وات در نرم افزار اسپایس شبیه سازی شده و نتایج در مقاله آمده است.
High step-up structures are commonly used to upgrade the low voltage levels generated by renewable energy sources. In this paper, a high step-up structure based on Quasi Z-Source network is presented, which has a simple yet functional structure consisting of two inductors and two capacitors. Due to the duty cycle of about 50% for this converter, the problems of reverse recovery of diodes and stability are solved. In addition, the common ground of the power switch and the input source simplifies the control circuit. Using the coupled inductor technique as well as the voltage multiplier cell, the converter voltage gain increases significantly. In addition, the stacked capacitor is used to limit the voltage stress on the switch. The use of the proposed structure increases the voltage gain of the converter. The proposed structure also reduces the level of voltage stress on the semiconductors of the circuit, which reduces the cost and increases the efficiency of the circuit. The converter designed with 25V/ 400V input/ output 100Wouput power is simulated in PSpice software and the results are presented.
[1] F.Z. Peng, "Z-source inverter", IEEE Trans. Power Electronic, vol. 39, no. 2, pp. 504-510, Mar./Apr. 2003 (doi: 10.1109/TIA.2003.808920).
[2] M. Soltani, S. Mirtalaee, "Design and simulation of a high step-up three level boost converter with coupled-inductor and passive clamp", Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 32, pp. 3-12, March 2017 (dor: 20.1001.1.23223871.1396.8.32.1.1) (in Persian).
[3] D. Taheri, G. Shahgholian, M.M. Mirtalaei, "Simulation of combined boost converter behavior with positive output voltage and investigation of voltage ripple at output", vol. 9, no. 3, pp. 1-8, autumn 2020 (in Persian).
[4] E.H. Ismail, M.A. Al-Saffar, A.J. Sabzali, "High conversion ratio dc–dc converters with reduced switch stress", IEEE Trans. on Power Electronics, vol. 55, no. 7, pp. 2139-2151, Aug. 2008 (doi: 10.1109/TCSI.2008.918195).
[5] Y. Zheng, K.M. Smedley, "Analysis and design of a single-switch high step-up coupled inductor boost converter", IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 535-545, Jan. 2019 (doi: 10.1109/TPEL.2019.2915348).
[6] M. Das, V. Agarwal, "Design and analysis of a high-efficiency dc–dc converter with soft switching capability for renewable energy applications requiring high voltage gain", IEEE Trans. on Power Electronics, vol. 63, no. 5, pp. 2936-2944, 2016 (doi: 10.1109/TIE.2016.2515565).
[7] O. Sharifiyana, M. Dehghani, G. Shahgholian, S. M. M. Mirtalaei, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 48, pp. 1-29, March 2022 (dor: 20.1001.1.23223871.1400.12.48.6.6) (in Persian).
[8] A.A.A. Hafez, “Multi-level cascaded dc/dc converters for PV applications”, Alexandria Engineering Journal, vol. 54, no. 4, pp. 1135-1146, Dec. 2015 (doi: 10.1016/j.aej.2015.09.004).
[9] B. Gu, J. Dominic, J.S. Lai, Z. Zhao, C. Liu, "High boost ratio hybrid transformer dc–dc converter for photovoltaic module applications", IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 2048-2058, May. 2013 (doi: 10.1109/TIE.2016.2515565)
[10] J.H. Lee, T.J. Liang, J.F. Chen, "Isolated coupled-inductor-integrated dc–dc converter with nondissipative snubber for solar energy applications”, IEEE Trans. on Industrial Electronics, vol. 61, no. 7, pp. 3337-3348, July 2014 (doi: 10.1109/TIE.2013.2278517).
[11] Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P. C. Loh and G.E. Town, "Impedance-source networks for electric power conversion part I: A topological review", IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 699-716, Feb. 2015 (doi: 10.1109/TPEL.2014.2313746).
[12] B. Axelrod, Y. Berkovich, A. Ioinovici, "Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc–dc PWM converters", IEEE Trans. on Circuits and Systems, vol. 55, no. 2, pp. 687-696, March 2008 (doi: 10.1109/TCSI.2008.916403).
[13] T. Nouri, M. Shaneh, A. Ghorbani, "Interleaved high step-up ZVS dc–dc converter with coupled inductor and built-in transformer for renewable energy systems applications", IET Power Electronics, vol. 13, no. 16, pp. 3537-3548, Dec. 2020 (doi: 10.1049/iet-pel.2020.0162).
[14] T. Nouri, M. Shaneh, "New interleaved high step-up converter based on a voltage multiplier cell mixed with magnetic devices", IET Power Electronics, vol. 13, no. 17, pp. 4089-4097, Dec. 2021 (doi: 10.1049/iet-pel.2020.0591).
[15] Z. Peiravan, M. Delshad, M.R. Amini, "A new soft switching interleaved flyback converter with parallel coupled inductors and recovery leakage inductance energy", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 31-47, September 2022 (dor: 20.1001.1.23223871.1401.13.50.2.3) (in Persian).
[16] J. Zhang, J. Ge, "Analysis of Z-source dc-dc converter in discontinuous current mode", Proceeding of the IEEE/APPEEC, Chengdu, China, March 2010 (doi: 10.1109/APPEEC.2010.5448927).
[17] M. Zhu, K. Yu, F.L. Luo, "Switched inductor Z-source inverter", IEEE Trans. on Industrial Electronics, vol. 25, no. 8, pp. 2150-2158, Aug. 2010 (doi: 10.1109/TPEL.2010.2046676).
[18] A. Raveendran, E. Paul, A.P. Ommen, "Quasi-Z-source dc-dc converter with switched capacitor", International Journal of Engineering Research and General Science, vol. 3, no. 4, pp. 1132-1137, July/Aug. 2015.
[19] G. Zhang, Z. Wang, S.S. Yu, S.Z. Chen, B. Zhang, H.H. Iu, Y. Zhang, "A generalized additional voltage pumping solution (GAVPS) for high-step-up converters", IEEE Trans. on Power Electronics, vol. 34, no. 7, pp. 6456-6467, 2019 (doi: 10.1109/TPEL.2018.2874006).
[20] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc–dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146 - 1153, April 2011 (doi: 10.1109/TPEL.2010.2090362).
_||_[1] F.Z. Peng, "Z-source inverter", IEEE Trans. Power Electronic, vol. 39, no. 2, pp. 504-510, Mar./Apr. 2003 (doi: 10.1109/TIA.2003.808920).
[2] M. Soltani, S. Mirtalaee, "Design and simulation of a high step-up three level boost converter with coupled-inductor and passive clamp", Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 32, pp. 3-12, March 2017 (dor: 20.1001.1.23223871.1396.8.32.1.1) (in Persian).
[3] D. Taheri, G. Shahgholian, M.M. Mirtalaei, "Simulation of combined boost converter behavior with positive output voltage and investigation of voltage ripple at output", vol. 9, no. 3, pp. 1-8, autumn 2020 (in Persian).
[4] E.H. Ismail, M.A. Al-Saffar, A.J. Sabzali, "High conversion ratio dc–dc converters with reduced switch stress", IEEE Trans. on Power Electronics, vol. 55, no. 7, pp. 2139-2151, Aug. 2008 (doi: 10.1109/TCSI.2008.918195).
[5] Y. Zheng, K.M. Smedley, "Analysis and design of a single-switch high step-up coupled inductor boost converter", IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 535-545, Jan. 2019 (doi: 10.1109/TPEL.2019.2915348).
[6] M. Das, V. Agarwal, "Design and analysis of a high-efficiency dc–dc converter with soft switching capability for renewable energy applications requiring high voltage gain", IEEE Trans. on Power Electronics, vol. 63, no. 5, pp. 2936-2944, 2016 (doi: 10.1109/TIE.2016.2515565).
[7] O. Sharifiyana, M. Dehghani, G. Shahgholian, S. M. M. Mirtalaei, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 48, pp. 1-29, March 2022 (dor: 20.1001.1.23223871.1400.12.48.6.6) (in Persian).
[8] A.A.A. Hafez, “Multi-level cascaded dc/dc converters for PV applications”, Alexandria Engineering Journal, vol. 54, no. 4, pp. 1135-1146, Dec. 2015 (doi: 10.1016/j.aej.2015.09.004).
[9] B. Gu, J. Dominic, J.S. Lai, Z. Zhao, C. Liu, "High boost ratio hybrid transformer dc–dc converter for photovoltaic module applications", IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 2048-2058, May. 2013 (doi: 10.1109/TIE.2016.2515565)
[10] J.H. Lee, T.J. Liang, J.F. Chen, "Isolated coupled-inductor-integrated dc–dc converter with nondissipative snubber for solar energy applications”, IEEE Trans. on Industrial Electronics, vol. 61, no. 7, pp. 3337-3348, July 2014 (doi: 10.1109/TIE.2013.2278517).
[11] Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P. C. Loh and G.E. Town, "Impedance-source networks for electric power conversion part I: A topological review", IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 699-716, Feb. 2015 (doi: 10.1109/TPEL.2014.2313746).
[12] B. Axelrod, Y. Berkovich, A. Ioinovici, "Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc–dc PWM converters", IEEE Trans. on Circuits and Systems, vol. 55, no. 2, pp. 687-696, March 2008 (doi: 10.1109/TCSI.2008.916403).
[13] T. Nouri, M. Shaneh, A. Ghorbani, "Interleaved high step-up ZVS dc–dc converter with coupled inductor and built-in transformer for renewable energy systems applications", IET Power Electronics, vol. 13, no. 16, pp. 3537-3548, Dec. 2020 (doi: 10.1049/iet-pel.2020.0162).
[14] T. Nouri, M. Shaneh, "New interleaved high step-up converter based on a voltage multiplier cell mixed with magnetic devices", IET Power Electronics, vol. 13, no. 17, pp. 4089-4097, Dec. 2021 (doi: 10.1049/iet-pel.2020.0591).
[15] Z. Peiravan, M. Delshad, M.R. Amini, "A new soft switching interleaved flyback converter with parallel coupled inductors and recovery leakage inductance energy", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 31-47, September 2022 (dor: 20.1001.1.23223871.1401.13.50.2.3) (in Persian).
[16] J. Zhang, J. Ge, "Analysis of Z-source dc-dc converter in discontinuous current mode", Proceeding of the IEEE/APPEEC, Chengdu, China, March 2010 (doi: 10.1109/APPEEC.2010.5448927).
[17] M. Zhu, K. Yu, F.L. Luo, "Switched inductor Z-source inverter", IEEE Trans. on Industrial Electronics, vol. 25, no. 8, pp. 2150-2158, Aug. 2010 (doi: 10.1109/TPEL.2010.2046676).
[18] A. Raveendran, E. Paul, A.P. Ommen, "Quasi-Z-source dc-dc converter with switched capacitor", International Journal of Engineering Research and General Science, vol. 3, no. 4, pp. 1132-1137, July/Aug. 2015.
[19] G. Zhang, Z. Wang, S.S. Yu, S.Z. Chen, B. Zhang, H.H. Iu, Y. Zhang, "A generalized additional voltage pumping solution (GAVPS) for high-step-up converters", IEEE Trans. on Power Electronics, vol. 34, no. 7, pp. 6456-6467, 2019 (doi: 10.1109/TPEL.2018.2874006).
[20] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc–dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146 - 1153, April 2011 (doi: 10.1109/TPEL.2010.2090362).