طراحی یک آنتن دو بیمی سر-آتش با استفاده از ساختار متامتریالی پیشنهادی جهت استفاده در کاربردهای MIMO در باند فرکانسی 60 گیگاهرتز
محورهای موضوعی : انرژی های تجدیدپذیرنرگس ملک پور 1 , محمدامین هنرور 2
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات پردازش دیجیتال و بینایی ماشین- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: آنتن سر-آتش, آنتن دو بیمی, تک سلولی متامتریالی ENZ, موج میلیمتری, آنتن با بهرهی بالا,
چکیده مقاله :
در این مقاله، یک آنتن پاپیونی سر-آتش دو بیمی در باند فرکانسی موج میلیمتری (57-64 گیگاهرتز) طراحی شده است. به طوری که با معرفی یک ساختار جدید در چینش تیغه های متامتریالی پیشنهادی در صفحه افقی آنتن پاپیونی، دو بیم در 60 و 120 درجه تولید می شود. آنتن پیشنهاد شده از یک آرایه 2×3 از سلول های متامتریالی، که منجر به افزایش بهره و همچنین تولید دو بیم می شود، تشکیل شده است. برای تولید دو بیم در صفحه E-planeتیغه های متامتریالی نسبت به محور آنتن با زاویه ی 15 درجه کج شده و در مقابل آنتن پاپیونی جاسازی شده اند. این تک سلولی ها، قابلیت ایجاد دو تشدید را داشته که می توانند در راستای بهبود بهره در یک باند فرکانسی وسیع، نقش شایانی را ایفا نمایند. پرتوهای اصلی آنتن در صفحه E-planeدر 60 و 120 درجه دارای بهره ی 5/9 دی سیبل در فرکانس 60 گیگاهرتز است.طرح نهایی آنتن پیشنهادی، شبیه سازی و با تحلیل های پارامتری، مناسب ترین ساختار علیرغم حفظ سایر مشخصه های تشعشعی و ساختاری آنتن ارائه گردیده است.
In this paper, a dual-beam end-fire Bow-tie antenna for millimeter-wave applications over 57–64 GHz is designed. By introducing a new structure in the decoration of metamaterial slabs in the horizontal plane of the Bowtie antenna, a dual-beam generated at 60° and 120°. The proposed antenna is composed of a 2×3 array of metamaterial unit cells, which leads to a considerable gain enhancement and generates a dual-beam pattern. To create a dual-beam in the E-plane, the array of metamaterial slabs integrated vertically in front of the Bowtie antenna and tilted by 15o with regard to the antenna axis to tailor the radiation beam. These unit cells are capable of creating two resonances that can play an important role to improve the gain in a wide frequency band. The resulting dual-beam radiation in the E-plane has maxima at +60 and 120 degrees with a maximum peak gain of 9.5 dBi at 60 GHz. The final design simulated with a parametric study, and the best configuration provided despite the maintenance of other radiation characteristics of the antenna.Keywords: End-Fire Antenna, dual-beam Antenna, ENZ Metamaterial unit-cell, Millimeter-Wave, High-Gain Antenna.
[1] S. Kirthiga, M. Jayakumar, "Performance of dual beam MIMO for millimeter wave indoor communication systems", Springer Wireless Personal Communications, no. 1, pp. 289–307, 2014 (doi:10.1007/s11277-013-1506-0).
[2] K. Li, M.I. Ingram, E.O. Rausch., "Multi beam antennas for indoor wireless communications", IEEE Trans. on Communications, vol. 50, no. 2, pp. 192-194, Feb. 2002 (doi: 10.1109/26.983314).
[3] J. Du, E. Onaran, D. Chizhik, S. Venkatesan, R.A. Valenzuela., "Gbps user rates using mm wave relayed backhaul with high gain antennas", IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1363-1372, June 2017 (doi: 10.1109/JSAC.2017.2686578).
[4] A. Dadgarpour, M.S. Sorkherizi, T.A. Denidni, A.A. Kishk., "Passive beam switching and dual-beam radiation slot antenna loaded with ENZ medium and excited through ridge gap waveguide at millimeter-waves",IEEE Trans. on Antennas Propagation, vol. 65, no. 1, pp. 92-102, Jan. 2017 (doi: 10.1109/TAP.2016.2631140).
[5] A. Dadgarpour, B. Zarghooni, B.S. Virdee, T.A. Denidni, "Beam deflection using gradient refractive index media for 60 GHz end-fire antenna", IEEE Trans. on Antennas Propagation, vol. 63, pp.3768–3774, Aug. 2015 (doi: 10.1109/TAP.2015.2438396).
[6] S.G. Kim, K. Chang, "Independently controllable dual-feed dual-beam phased array using piezoelectric transducers", IEEE Antennas Wireless Propagation Letters, vol. 1, pp. 81–83, 2002 (doi: 10.1109/LAWP.2002.802551).
[7] W. Cao, W. Hong, Z.N. Chen, B. Zhang, A. Liu., "Gain enhancement of beam scanning substrate integrated waveguide slot array antennas using a phase-correcting grating cover", IEEE Trans. on Antennas Propagation, vol. 62, pp. 4584–4591, 2014 (doi: 10.1109/TAP.2014.2333058).
[8] K. Hosoya, N. Prasad, K. Ramachandran, N. Orihashi, S. Kishimoto, S. Rampath, K. Maruhashi., "Multiple sector ID capture (MIDC): A novel beamforming technique for 60 GHz band multi-Gbps WLAN/PAN systems", IEEE Trans. on Antennas Propagation, vol. 81, no.1, pp. 81–96, 2015 (doi: 10.1109/TAP.2014.2365209).
[9] N. Malekpour, M.A. Honarvar, A. Dadgarpour, B.S. Virdee, T.A. Denidni, "Compact UWB mimo antenna with band-notched characteristic", Microwave and Optimal Technology Letters, vol. 59, pp. 1037-1041, 2017 (doi: 10.1002/mop.30462).
[10] Z.L. Ma, L.J. Jiang, "One-dimensional triple periodic dual-beam microstrip leaky-wave antenna", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 390-393, 2015 (doi:10.1109/LAWP.2014.2365394).
[11] A. Khidre, K.F. Lee, A.Z. Elsherbeni, F. Yang., "Wide band dual-beam u-slot microstrip antenna", IEEE Trans. on Antennas Propagation, vol. 61, no. 3, pp. 1415–1418, 2013 (doi: 10.1109/TAP.2012.2228617).
[12] S. Liu, F. S. Qi, W. Wu, D.G. Fang., "Single-feed dual-band single/dual-beam U-slot antenna for wireless communication application", IEEE Trans. on Antennas Propagation, vol. 63,pp. 3759 - 3764, 2015 (doi: 10.1109/TAP.2015.2438331).
[13] Y.Y. Bai, S. Xiao, M.C. Tang, Z.F. Ding, B.Z. Wang, "Wide-angle scanning phased array with pattern reconfigurable elements", IEEE Trans. on Antennas Propagation, vol. 59, no. 11, pp. 4071-4076, Nov. 2011 (doi: 10.1109/TAP.2011.2164176).
[14] P. Xie, G. Wang, H. Li, T. Wen, X. Kong., "Frequency reconfigurable quasi-yagi antenna with a novel balun loading four PIN diodes", Frequenz, vol. 72, no. 5-6, pp. 189–195, 2018 (doi: 10.1515/freq-2016-0372).
[15] Z. Liang, W, Qun, T.A. Denidni, "Electronically radiation pattern steerable antennas using active frequency selective surfaces", IEEE Trans. on Antennas Propagation, vol. 61, no. 12, pp. 6000-6007, 2013 (doi: 10.1109/TAP.2013.2282921).
[16] Chang won Jung, Ming-jer Lee, G. P. Li and F. De Flaviis., "Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches", IEEE Trans. on Antennas Propagation, vol. 54, no. 2, pp. 455-463, 2006 (doi: 10.1109/TAP.2005.863407).
[17] A.A. Eldek, A.Z. Elsherbeni, C.E. Smith., "Wide-band modified printed bow-tie antenna with single and dual polarization for C– and X-band applications", IEEE Trans. on Antennas Propagation, vol. 53, no. 9, pp. 3067-3072, 2005 (doi: 10.1109/TAP.2005.851870).
[18] Y. Hao, Z. Kuang, D. Xumin, W. Qun, "A dual-beam leaky-wave antenna based on squarely modulated reactance surface", Applied Sciiences, vol. 10, no. 962, 2020 (doi:10.3390/app10030962).
[19] Z. Wani, M.P. Abegaonkar, S.K. Koul, "Dual-beam antenna using routing of electromagnetic waves by single-epsilon-high anisotropic medium at 28-GHz", IEEE Trans. on Antennas Propagation, vol. 68, no. 1, pp.142-151, 2019 (doi: 10.1109/TAP.2019.2938793).
[20] A. Dadgarpour, A.A. Kishk, T.A. Denidni, "Dual band high-gain antenna with beam switching capability", IET Microwaves, Antennas and Propagation. Vol. 11, no.15, pp. 2155-2161, 2017 (doi: 10.1049/iet-map.2017.0294).
[21] J. Tan, W. Jiang, S. Gong, T. Cheng, J. Ren, K. Zhang, "Design of a dual-beam cavity-backed patch antenna for future fifth generation wireless networks", Antennas Propagation IET Microwaves, vol. 12, no. 10, pp. 1700–1703, 2018 (doi: 10.1049/iet-map.2018.0085).
_||_[1] S. Kirthiga, M. Jayakumar, "Performance of dual beam MIMO for millimeter wave indoor communication systems", Springer Wireless Personal Communications, no. 1, pp. 289–307, 2014 (doi:10.1007/s11277-013-1506-0).
[2] K. Li, M.I. Ingram, E.O. Rausch., "Multi beam antennas for indoor wireless communications", IEEE Trans. on Communications, vol. 50, no. 2, pp. 192-194, Feb. 2002 (doi: 10.1109/26.983314).
[3] J. Du, E. Onaran, D. Chizhik, S. Venkatesan, R.A. Valenzuela., "Gbps user rates using mm wave relayed backhaul with high gain antennas", IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1363-1372, June 2017 (doi: 10.1109/JSAC.2017.2686578).
[4] A. Dadgarpour, M.S. Sorkherizi, T.A. Denidni, A.A. Kishk., "Passive beam switching and dual-beam radiation slot antenna loaded with ENZ medium and excited through ridge gap waveguide at millimeter-waves",IEEE Trans. on Antennas Propagation, vol. 65, no. 1, pp. 92-102, Jan. 2017 (doi: 10.1109/TAP.2016.2631140).
[5] A. Dadgarpour, B. Zarghooni, B.S. Virdee, T.A. Denidni, "Beam deflection using gradient refractive index media for 60 GHz end-fire antenna", IEEE Trans. on Antennas Propagation, vol. 63, pp.3768–3774, Aug. 2015 (doi: 10.1109/TAP.2015.2438396).
[6] S.G. Kim, K. Chang, "Independently controllable dual-feed dual-beam phased array using piezoelectric transducers", IEEE Antennas Wireless Propagation Letters, vol. 1, pp. 81–83, 2002 (doi: 10.1109/LAWP.2002.802551).
[7] W. Cao, W. Hong, Z.N. Chen, B. Zhang, A. Liu., "Gain enhancement of beam scanning substrate integrated waveguide slot array antennas using a phase-correcting grating cover", IEEE Trans. on Antennas Propagation, vol. 62, pp. 4584–4591, 2014 (doi: 10.1109/TAP.2014.2333058).
[8] K. Hosoya, N. Prasad, K. Ramachandran, N. Orihashi, S. Kishimoto, S. Rampath, K. Maruhashi., "Multiple sector ID capture (MIDC): A novel beamforming technique for 60 GHz band multi-Gbps WLAN/PAN systems", IEEE Trans. on Antennas Propagation, vol. 81, no.1, pp. 81–96, 2015 (doi: 10.1109/TAP.2014.2365209).
[9] N. Malekpour, M.A. Honarvar, A. Dadgarpour, B.S. Virdee, T.A. Denidni, "Compact UWB mimo antenna with band-notched characteristic", Microwave and Optimal Technology Letters, vol. 59, pp. 1037-1041, 2017 (doi: 10.1002/mop.30462).
[10] Z.L. Ma, L.J. Jiang, "One-dimensional triple periodic dual-beam microstrip leaky-wave antenna", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 390-393, 2015 (doi:10.1109/LAWP.2014.2365394).
[11] A. Khidre, K.F. Lee, A.Z. Elsherbeni, F. Yang., "Wide band dual-beam u-slot microstrip antenna", IEEE Trans. on Antennas Propagation, vol. 61, no. 3, pp. 1415–1418, 2013 (doi: 10.1109/TAP.2012.2228617).
[12] S. Liu, F. S. Qi, W. Wu, D.G. Fang., "Single-feed dual-band single/dual-beam U-slot antenna for wireless communication application", IEEE Trans. on Antennas Propagation, vol. 63,pp. 3759 - 3764, 2015 (doi: 10.1109/TAP.2015.2438331).
[13] Y.Y. Bai, S. Xiao, M.C. Tang, Z.F. Ding, B.Z. Wang, "Wide-angle scanning phased array with pattern reconfigurable elements", IEEE Trans. on Antennas Propagation, vol. 59, no. 11, pp. 4071-4076, Nov. 2011 (doi: 10.1109/TAP.2011.2164176).
[14] P. Xie, G. Wang, H. Li, T. Wen, X. Kong., "Frequency reconfigurable quasi-yagi antenna with a novel balun loading four PIN diodes", Frequenz, vol. 72, no. 5-6, pp. 189–195, 2018 (doi: 10.1515/freq-2016-0372).
[15] Z. Liang, W, Qun, T.A. Denidni, "Electronically radiation pattern steerable antennas using active frequency selective surfaces", IEEE Trans. on Antennas Propagation, vol. 61, no. 12, pp. 6000-6007, 2013 (doi: 10.1109/TAP.2013.2282921).
[16] Chang won Jung, Ming-jer Lee, G. P. Li and F. De Flaviis., "Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches", IEEE Trans. on Antennas Propagation, vol. 54, no. 2, pp. 455-463, 2006 (doi: 10.1109/TAP.2005.863407).
[17] A.A. Eldek, A.Z. Elsherbeni, C.E. Smith., "Wide-band modified printed bow-tie antenna with single and dual polarization for C– and X-band applications", IEEE Trans. on Antennas Propagation, vol. 53, no. 9, pp. 3067-3072, 2005 (doi: 10.1109/TAP.2005.851870).
[18] Y. Hao, Z. Kuang, D. Xumin, W. Qun, "A dual-beam leaky-wave antenna based on squarely modulated reactance surface", Applied Sciiences, vol. 10, no. 962, 2020 (doi:10.3390/app10030962).
[19] Z. Wani, M.P. Abegaonkar, S.K. Koul, "Dual-beam antenna using routing of electromagnetic waves by single-epsilon-high anisotropic medium at 28-GHz", IEEE Trans. on Antennas Propagation, vol. 68, no. 1, pp.142-151, 2019 (doi: 10.1109/TAP.2019.2938793).
[20] A. Dadgarpour, A.A. Kishk, T.A. Denidni, "Dual band high-gain antenna with beam switching capability", IET Microwaves, Antennas and Propagation. Vol. 11, no.15, pp. 2155-2161, 2017 (doi: 10.1049/iet-map.2017.0294).
[21] J. Tan, W. Jiang, S. Gong, T. Cheng, J. Ren, K. Zhang, "Design of a dual-beam cavity-backed patch antenna for future fifth generation wireless networks", Antennas Propagation IET Microwaves, vol. 12, no. 10, pp. 1700–1703, 2018 (doi: 10.1049/iet-map.2018.0085).