ارتقاء عملکرد سلول خورشیدی مبتنی بر کادمیوم تلوراید با استفاده از ترکیبات ZnCdS/NiO و ZnO برای لایه های ETL/HTL و TCO
محورهای موضوعی : انرژی های تجدیدپذیرابراهیم عموپور 1 , جواد حسن زاده کلاشمی 2 , علی عبداله زاده ضیابری 3 , پیمان عظیمی انارکی 4
1 - گروه فیزیک- واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
2 - گروه فیزیک- واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
3 - آزمایشگاه تحقیقاتی نانو- واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
4 - گروه فیزیک- واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
کلید واژه: سلول خورشیدی, اکسید رسانای شفاف, سلول خورشیدی کادمیوم تلوراید, لایههای ترابردکننده الکترون/حفره,
چکیده مقاله :
سلول خورشیدی کادمیوم تلوراید (CdTe) به دلیل کارایی بالا، هزینه کم و پایداری بالا شناخته شده است. در این مقاله، شبیهسازی سلول خورشیدی مبتنی بر کادمیوم تلوراید (ZnO/ZnCdS/CdTe/NiO/Al) ارائه شده است. لایه های ZnCdS،NiO و ZnO به ترتیب به عنوان لایه های ترابردکننده الکترون/حفره (ETL/HTL) و اکسید رسانای شفاف (TCO) استفاده شده اند. برای ارزیابی عملکرد سلول خورشیدی چند پیوندی کادمیوم تلوراید از نرم افزار شبیه سازی SCAPS-1D استفاده شد. این نرم افزار قادر به تجزیه و تحلیل کارایی با پارامترهای مختلف سلول خورشیدی کادمیوم تلوراید است. تأثیر ضخامت لایه ها، چگالی حامل ها، چگالی نقایص و چگالی نقایص پیوندگاه ZnCdS/CdTe بر عملکرد سلول خورشیدی نیز بررسی شد. سلول خورشیدی بهینه سازی شده با ولتاژ مدار باز(VOC) 095/1 ولت، چگالی جریان اتصال کوتاه (JSC) 22/27 میلی-آمپر بر سانتی متر مربع و ضریب پری (FF) 14/88 درصد و بیشینه بازده تبدیل انرژی (PCE) 3/26 درصد را نشان داد که امیدواری بسیار بالایی را در استحصال انرژی خورشیدی نشان میدهد.
Cadmium telluride (CdTe) solar cell is known for its high efficiency, low cost and high stability. In this paper, simulation of CdTe based solar cell (ZnO/ZnCdS/CdTe/NiO/Al) has been presented. ZnCdS, NiO and ZnO layers have been used as electron/hole transport layer (ETL/HTL) and transparent conductive oxide (TCO) layer, respectively. SCAPS-1D simulation software was used to evaluate the performance of the modelled multijunction CdTe solar cell. This software is capable of analyzing the efficiency with different parameters of cadmium telluride solar cell. The impact of thickness, carrier concentration, defect density of the CdTe, and ZnCdS/ CdTe interface defect density on the solar cell performance was also investigated. The optimized solar cell demonstrated a maximum power conversion efficiency (PCE) of 26.3 % with open circuit voltage (VOC) of 1.095 V, short circuit current density (JSC) of 27.22 mA/cm2 and FF of 88.14 % that shows huge promise in low-cost solar energy harvesting.
[1] J. Huang, S. Xiang, J. Yu, C.-Zhi Li, "Highly efficient prismatic perovskite solar cells", Energy and Environmental Science, vol. 12, no. 3, pp. 929-937, Nov. 2019 (doi: 10.1039/C8EE02575D).
[2] Y. Wang, Q. Fan, X. Guo, W. Li, B. Guo, W. Su, X. Ou, M. Zhang, "High-performance nonfullerene polymer solar cells based on a fluorinated wide bandgap copolymer with a high open-circuit voltage of 1.04 V", Journal of Materials Chemistry A, vol. 5, no. 42, pp. 22180–22185, Sept. 2017 (doi: 10.1039/C7TA07785H).
[3] Z. Yi, N.H. Ladi, X. Shai, H. Li, Y. Shen, M. Wang, "Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?" Nanoscale Advances, vol. 1, pp. 1276–1289, Jan. 2019 (doi: 10.1039/C8NA00416A).
[4] S. Ahmmed, A. Aktar, M.F. Rahman, J. Hossain, A.B.M. Ismail, "A numerical simulation of high efficiency CdS/CdTe solar cell using NiO HTL and ZnO TCO", Optik, vol. 223, Article Number: 165625, Dec. 2020 (doi: 10.1016/j.ijleo.2020.165625).
[5] L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, "Evaluation of CdS/CdTe thin flm solar cells: SCAPS thickness simulation and analysis of optical properties", Optical Materials (Amst), vol. 92, pp. 319–329, June 2019 (doi: 10.1016/j.optmat.2019.04.029).
[6] S. Du, L. Zhu, W. Li, J. Zhang, L. Wu, W. Wang, "Bilayered ZnTe/Cu1.4Te alloy thin films as a back contact for CdTe solar cells", Solar Energy, vol. 185, pp. 262–269, June 2019 (doi: 10.1016/j.solener.2019.04.052).
[7] J. Qi, W. Liu, C. Biswas, G. Zhang, L. Sun, Z. Wang, X. Hu, Y. Zhang, "Enhanced power conversion effciency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes", Optics Communications, vol. 349, pp. 198–202, Aug. 2015 (doi: 10.1016/j.optcom.2015.03.060).
[8] J. Liu, X. Liu, K. Yang, S. He, H. Lu, B. Li, G. Zeng, J. Zhang, W. Li, L. Wu, L. Feng, "Preparation and characterization of pulsed laser deposited Sb2Te3 back contact for CdTe thin flm solar cell", Applied Surface Science, vol. 453, pp. 126–131, Sept. 2018 (doi: 10.1016/j.apsusc.2018.05.075).
[9] S. Ahmmed, A. Aktar, J. Hossain, A.B.M. Ismail, "Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL", Solar Energy, vol. 207, pp. 693–702, Sept. 2020 (doi: 10.1016/j.solener.2020.07.003).
[10] A. Kuddus, M.F. Rahman, S. Ahmmed, J. Hossain, A.B.M. Ismail, "Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data", Superlattices Microstruct, vol. 132, Article Number: 106168, Aug. 2019 (doi: 10.1016/j.spmi.2019.106168).
[11] S. Boudour, I. Bouchama, M. Hadjab, S. Laidoudi, "Optimization of defected ZnO/Si/Cu2O heterostructure solar cell", Optical Materials (Amst), vol. 98, Article Number: 109433, Dec. 2019 (doi: 10.1016/j.optmat.2019.109433).
[12] M.I. Hossain, F.H. Alharbi, N. Tabet, "Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells", Solar Energy, vol. 120, pp. 370–380, Oct. 2015. (doi: 10.1016/j.solener.2015.07.040).
[13] F.F. Muhammad, K. Sulaiman,"Photovoltaic performance of organic solar cells based on DH6T/PCBM
thin film active layers", Thin Solid Films, vol. 519, pp. 5230-5233, May 2011. (doi: 10.1016/j.tsf.2011.01.165).
[14] M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang, J. Chang, Y. Hao, "Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering", Nano-Micro Letters, vol. 11, Article Number: 91, Oct. 2019 (doi: 10.1007/s40820-019-0320-y)
[15] J.P. Long, V.M. Bermudez, "Band bending and photoemission-induced surface photovoltages on clean n- and p-GaN (0001) surfaces", Physical Review B. vol. 66, no. 12, pp. 121308, Sept. 2002 (doi: 10.1103/PhysRevB.66.121308)
[16] O.M. Hussain, P.S. Reddy, B.S. Naidu, S. Uthanna, P.J. Reddy, "Characterization of thin film ZnCdS/CdTe Solar cells", Semiconductor Sience. and Technology, vol. 6, no. 7, Article Number: 690, 1991 (doi: 10.1088/0268-1242/6/7/023).
[17] M.S. Hossain, K.S. Rahman, M.R. Karim, M.O. Aijaz, M.A. Dar, M.A. Shar, H. Misran, N. Amin, "Impact of CdTe thin film thickness in ZnxCd1–xS/CdTe solar cell by RF sputtering", Solar Energy, vol. 180, pp. 559–566, 2019 (doi: 10.1016/j.solener.2019.01.019).
[18] M. S. Hossain, N. Amin, T. Razykov, "Prospects of back contacts with back surface fields in high efficiency ZnxCd1–xS/CdTe solar cells from numerical modelling", Chalcogenide Letters, vol. 8, no. 3, pp. 187–197, 2011.
[19] S.M.S. Hasheminassab, M. Imanieh, A. Kamali, S.A. Emamghorashi, S. Hassanhasseini, "Increased light absorption in CIGS solar cells with plasmonic Ag nanostructures to increase efficiency", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 45, pp. 35-49, Spring 2021 (in Persian).
_||_
[1] J. Huang, S. Xiang, J. Yu, C.-Zhi Li, "Highly efficient prismatic perovskite solar cells", Energy and Environmental Science, vol. 12, no. 3, pp. 929-937, Nov. 2019 (doi: 10.1039/C8EE02575D).
[2] Y. Wang, Q. Fan, X. Guo, W. Li, B. Guo, W. Su, X. Ou, M. Zhang, "High-performance nonfullerene polymer solar cells based on a fluorinated wide bandgap copolymer with a high open-circuit voltage of 1.04 V", Journal of Materials Chemistry A, vol. 5, no. 42, pp. 22180–22185, Sept. 2017 (doi: 10.1039/C7TA07785H).
[3] Z. Yi, N.H. Ladi, X. Shai, H. Li, Y. Shen, M. Wang, "Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?" Nanoscale Advances, vol. 1, pp. 1276–1289, Jan. 2019 (doi: 10.1039/C8NA00416A).
[4] S. Ahmmed, A. Aktar, M.F. Rahman, J. Hossain, A.B.M. Ismail, "A numerical simulation of high efficiency CdS/CdTe solar cell using NiO HTL and ZnO TCO", Optik, vol. 223, Article Number: 165625, Dec. 2020 (doi: 10.1016/j.ijleo.2020.165625).
[5] L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, "Evaluation of CdS/CdTe thin flm solar cells: SCAPS thickness simulation and analysis of optical properties", Optical Materials (Amst), vol. 92, pp. 319–329, June 2019 (doi: 10.1016/j.optmat.2019.04.029).
[6] S. Du, L. Zhu, W. Li, J. Zhang, L. Wu, W. Wang, "Bilayered ZnTe/Cu1.4Te alloy thin films as a back contact for CdTe solar cells", Solar Energy, vol. 185, pp. 262–269, June 2019 (doi: 10.1016/j.solener.2019.04.052).
[7] J. Qi, W. Liu, C. Biswas, G. Zhang, L. Sun, Z. Wang, X. Hu, Y. Zhang, "Enhanced power conversion effciency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes", Optics Communications, vol. 349, pp. 198–202, Aug. 2015 (doi: 10.1016/j.optcom.2015.03.060).
[8] J. Liu, X. Liu, K. Yang, S. He, H. Lu, B. Li, G. Zeng, J. Zhang, W. Li, L. Wu, L. Feng, "Preparation and characterization of pulsed laser deposited Sb2Te3 back contact for CdTe thin flm solar cell", Applied Surface Science, vol. 453, pp. 126–131, Sept. 2018 (doi: 10.1016/j.apsusc.2018.05.075).
[9] S. Ahmmed, A. Aktar, J. Hossain, A.B.M. Ismail, "Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL", Solar Energy, vol. 207, pp. 693–702, Sept. 2020 (doi: 10.1016/j.solener.2020.07.003).
[10] A. Kuddus, M.F. Rahman, S. Ahmmed, J. Hossain, A.B.M. Ismail, "Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data", Superlattices Microstruct, vol. 132, Article Number: 106168, Aug. 2019 (doi: 10.1016/j.spmi.2019.106168).
[11] S. Boudour, I. Bouchama, M. Hadjab, S. Laidoudi, "Optimization of defected ZnO/Si/Cu2O heterostructure solar cell", Optical Materials (Amst), vol. 98, Article Number: 109433, Dec. 2019 (doi: 10.1016/j.optmat.2019.109433).
[12] M.I. Hossain, F.H. Alharbi, N. Tabet, "Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells", Solar Energy, vol. 120, pp. 370–380, Oct. 2015. (doi: 10.1016/j.solener.2015.07.040).
[13] F.F. Muhammad, K. Sulaiman,"Photovoltaic performance of organic solar cells based on DH6T/PCBM
thin film active layers", Thin Solid Films, vol. 519, pp. 5230-5233, May 2011. (doi: 10.1016/j.tsf.2011.01.165).
[14] M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang, J. Chang, Y. Hao, "Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering", Nano-Micro Letters, vol. 11, Article Number: 91, Oct. 2019 (doi: 10.1007/s40820-019-0320-y)
[15] J.P. Long, V.M. Bermudez, "Band bending and photoemission-induced surface photovoltages on clean n- and p-GaN (0001) surfaces", Physical Review B. vol. 66, no. 12, pp. 121308, Sept. 2002 (doi: 10.1103/PhysRevB.66.121308)
[16] O.M. Hussain, P.S. Reddy, B.S. Naidu, S. Uthanna, P.J. Reddy, "Characterization of thin film ZnCdS/CdTe Solar cells", Semiconductor Sience. and Technology, vol. 6, no. 7, Article Number: 690, 1991 (doi: 10.1088/0268-1242/6/7/023).
[17] M.S. Hossain, K.S. Rahman, M.R. Karim, M.O. Aijaz, M.A. Dar, M.A. Shar, H. Misran, N. Amin, "Impact of CdTe thin film thickness in ZnxCd1–xS/CdTe solar cell by RF sputtering", Solar Energy, vol. 180, pp. 559–566, 2019 (doi: 10.1016/j.solener.2019.01.019).
[18] M. S. Hossain, N. Amin, T. Razykov, "Prospects of back contacts with back surface fields in high efficiency ZnxCd1–xS/CdTe solar cells from numerical modelling", Chalcogenide Letters, vol. 8, no. 3, pp. 187–197, 2011.
[19] S.M.S. Hasheminassab, M. Imanieh, A. Kamali, S.A. Emamghorashi, S. Hassanhasseini, "Increased light absorption in CIGS solar cells with plasmonic Ag nanostructures to increase efficiency", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 45, pp. 35-49, Spring 2021 (in Persian).