یک پروتکل مسیریابی جدید مبتنی بر کیفیت سرویس برای جریان سازی ویدیو در شبکه های موردی بین خودرویی با استفاده از الگوریتم کلونی مورچگان و منطق فازی
محورهای موضوعی : انرژی های تجدیدپذیرمحمد وفائی 1 , احمد خادم زاده 2 , محمدعلی پورمینا 3
1 - دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - مرکز تحقیقات مخابرات، تهران، ایران
3 - دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: منطق فازی, کیفیت سرویس, مسیریابی چند مسیره, الگوریتم کلونی مورچگان, جریانسازی ویدیو, شبکههای موردی بین خودرویی,
چکیده مقاله :
انتقال چند مسیره یک روش انتقال مناسب برای بستههایی با سرعت داده بالا مانند جریانسازی ویدیو میباشد. به منظور جریانسازی ویدیو با کیفیت بالا، بستههای ویدیویی برای انتقال از مسیرهای متفاوت به فریمهای مختلفی تقسیم میشوند. با این حال، بسیاری از ویژگیهای ذاتی شبکههای موردی بین خودرویی، طراحی یک پروتکل مسیریابی کارآمد و پایدار را برای کاربردهای مختلف در این شبکهها دشوار میکند. به طور خاص، ماهیت پویای توپولوژی و قطعیهای ارتباط برقراری کیفیت سرویس را بسیار دشوار میکند. برای تامین کیفیت سرویس در کاربردهای سرگرمی و موارد ایمنی در شبکههای موردی بین خودرویی، ما یک پروتکل مسیریابی مبتنی بر تقاطع با توجه به کیفیت سرویس از نظر تاخیر، نرخ تحویل بسته و احتمال اتصال پیشنهاد نمودیم. به منظور ایجاد مسیرهایی با بهترین کیفیت سرویس، مسئله مسیریابی مربوطه را به عنوان مسئله بهینهسازی در نظر گرفتیم و یک الگوریتم مبتنی بر کلونی مورچگان برای حل آن پیشنهاد نمودیم. علاوه بر این، یک الگوریتم مبتنی بر منطق فازی برای انتخاب بهترین وسیله نقلیه گام بعدی با در نظر گرفتن موقعیت خودرو، کیفیت لینک و مدل تحرک وسیله نقلیه پیشنهاد شده است. با توجه به نتایج شبیه سازی، الگوریتم پیشنهادی نرخ تحویل بسته بیشتر از 2/84 درصد، تاخیر انتها به انتها کمتر از 58/3 ثانیه، سربار کمتر از 65/15 درصد و نرخ بیشینه سیگنال به نویز بیشتر از 82/20 دسیبل را ارائه میدهد. تجزیه و تحلیل نتایج نشان میدهد که عملکرد روش پیشنهادی بسیار خوب است.
The multi-path transmission is an appropriate transmission method for high data rate packets like video streaming. To provide video streaming with high quality, the video packets are divided into different frames for transmitting through various paths. Nevertheless, regarding the results of numerous inherent features of vehicular ad-hoc networks (VANETs), designing an efficient and stable routing protocol is difficult for various applications of VANETs. In particular, the dynamic nature of topology and intermittent connectivity make maintaining the quality of service (QoS) task very difficult. To provide QoS to entertainment applications and traffic safety in VANET, we offer a routing protocol based on the adaptive intersection with QoS support regarding delay, packet delivery ratio (PDR), and connectivity probability. To establish the best QoS routes, we considered the equivalent routing problem as the optimization problem and then proposed an algorithm based on ant colony optimization (ACO) for solving it. Furthermore, a fuzzy logic-based algorithm was employed to select the best next-hop vehicle by incorporating multiple metrics associated with the vehicle’s position, link quality, and vehicle mobility. According to the simulation results, the proposed approach achieves the average PDR of more than 84.2%, the end-to-end delay of less than 3.58 s, the overhead of less than 15.65%, and the peak signal to noise ratio (PSNR) of more than 20.82 dB. It is understandable from the result analysis that the performance of the proposed approach is excellent.
[1] G. Sun, L. Song, H. Yu, V. Chang, X. Du, M. Guizani, “V2V routing in a VANET based on the autoregressive integrated moving average model”, IEEE Trans. on Vehicular Technology, vol. 68, no. 1, pp. 908-922, Jan. 2019 (doi: 10.1109/TVT.2018.2884525).
[2] O. S. Al-Heety, Z. Zakaria, M. Ismail, M. M. Shakir, S. Alani, H. Alsariera, “A comprehensive survey: benefits, services, recent works, challenges, security, and use cases for SDN-VANET”, IEEE Access, vol. 8, pp. 91028-91047, May 2020 (doi: 10.1109/ACCESS.2020.2992580).
[3] M. Azees, P. Vijayakumar, L. J. Deborah, “Comprehensive survey on security services in vehicular ad-hoc networks”, IET Intelligent Transport Systems, vol. 10, no. 6, pp. 379–388, August 2016 (doi: 10.1049/iet-its.2015.0072).
[4] S. More, U. Naik, “Optimal multipath routing for video transmission in VANETs”, Wireless Personal Communications, vol. 116, no. 1, pp. 805-827, January 2021 (doi: 10.1007/s11277-020-07740-1).
[5] M. Vafaei, A. Khademzadeh, M.A. Pourmina, “QoS-aware multi-path video streaming for urban VANETs using ACO algorithm”, Telecommunication Systems,vol. 75, no. 1, pp.79-96, September 2020 (doi: 10.1007/s11235-020-00677-7).
[6] M. A. Salkuyeh, B. Abolhassani, “Optimal video packet distribution in multipath routing for urban VANETs”, Journal of Communications and Networks, vol. 20, no. 2, pp. 198-206, April 2018 (doi: 10.1109/JCN.2018.000026).
[7] H. Xie, A. Boukerche, A. A. F. Loureiro, “A multipath video streaming solution for vehicular networks with link disjoint and node-disjoint”, IEEE Trans. on Parallel and Distributed Systems, vol. 26, no. 12, pp. 3223-3235, Dec. 2015 (doi: 10.1109/TPDS.2014.2371027).
[8] A. Aliyu, A. H. Abdullah, N. Aslam, A. Altameem, R. Z. Radzi, R. Kharel, M. Mahmud, S. Prakash, U. M. Joda, “Interference-aware multipath video streaming in vehicular environments”, IEEE Access, vol. 6, pp. 47610-47626, August 2018 (doi: 10.1109/ACCESS.2018.2854784).
[9] S. Kamali, J. Opatrny. “A position based ant colony routing algorithm for mobile ad-hoc networks”, Journal of Networks, vol. 3, no. 4, pp. 459-462, Apr. 2008 (doi: 10.1109/ICWMC.2007.68).
[10] J. Nzouonta, N. Rajgure, G. Wang, C. Borcea, “Vanet routing on city roads using real-time vehicular traffic information”, IEEE Trans. on Vehicular Technology, vol. 58, no. 7, pp. 3609-3626, Sept. 2009 (doi: 10.1109/TVT.2009.2014455).
[11] R. Tavakkoli-Moghaddam, N. Safaei, Y. Gholipour, “A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length”, Applied Mathematics and Computation, vol. 176, no. 2, pp. 445-454, May 2006 (doi: 10.1016/j.amc.2005.09.040).
[12] G. Zhang, M. Wu, W. Duan, X. Huang, “Genetic algorithm based QoS perception routing protocol for VANETs”, Wireless Communications and Mobile Computing, vol. 2018, no. 1, pp. 1–10, Jan. 2018 (doi: 10.1155/2018/3897857).
[13] E. Moridi, H. Barati, “RMRPTS: A reliable multi-level routing protocol with tabu search in VANET”, Telecommunication Systems, vol. 65, no. 1, pp. 127–137, May 2017 (doi: 10.1007/s11235-016-0219-6).
[14] G. Li, L. Boukhatem, J. Wu, “Adaptive quality of service based routing for vehicular ad hoc networks with ant colony optimization”, IEEE Trans. on Vehicular Technology, vol. 66, no. 4, pp. 3249-3264, April 2017 (doi: 10.1109/TVT.2016.2586382).
[15] M. H. Eiza, T. Owens, Q. Ni, Q. Shi, “Situation-aware QoS routing algorithm for vehicular ad hoc networks”, IEEE Trans. on Vehicular Technology, vol. 64, no. 12, pp. 5520-5535, Dec. 2015 (doi: 10.1109/TVT.2015.2485305).
[16] F. Goudarzi, H. Asgari, H. S. Al-Raweshidy, “Traffic-aware VANET routing for city environments—A protocol based on ant colony optimization”, IEEE Systems Journal, vol. 13, no. 1, pp. 571-581, March 2019 (doi: 10.1109/JSYST.2018.2806996).
[17] M. Asefi, J. W. Mark, X. S. Shen, “A Mobility-aware and quality-driven retransmission limit adaptation scheme for video streaming over VANETs”, IEEE Trans. on Wireless Communications, vol. 11, no. 5, pp. 1817–1827, May 2012 (doi: 10.1109/TWC.2012.030812.111064).
[18] M. Xing, L. Cai, “Adaptive video streaming with intervehicle relay for highway VANET scenario”, Proceedings of the IEEE/ICC, pp. 5168–5172, Ottawa, Canada, Nov. 2012 (doi: 10.1109/ICC.2012.6364143).
[19] K. Kastsaros, M. Dianati, R. Tafazolli, R. Kernchen, “CLWPR- A novel cross layer optimized position based routing protocol for VANETs”, Proceedings of the IEEE/VNC, pp. 139-146, Amsterdam, Netherlands, Nov. 2011 (doi: 10.1109/VNC.2011.6117135).
[20] C. Wu, S. Ohzahata, T. Kato, “Flexible, portable, and practicable solution for routing in VANETs: A fuzzy constraint Q-learning approach”, IEEE Trans. on Vehicular Technology, vol. 62, no. 9, pp. 4251-4263, Nov. 2013, (doi: 10.1109/TVT.2013.2273945).
[21] O. Alzamzami, I. Mahgoub, “Fuzzy logic-based geographic routing for urban vehicular networks using link quality and achievable throughput estimations”, IEEE Trans. on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2289-2300, June 2019 (doi: 10.1109/TITS.2018.2867177).
[22] H. Xie, A. Boukerche, A. A. F. Loureiro, “MERVS: A novel multichannel error recovery video streaming protocol for vehicle ad hoc networks”, IEEE Trans. on Vehicular Technology, vol. 65, no. 2, pp. 923-935, Feb. 2016 (doi: 10.1109/TVT.2015.2397862).
_||_[1] G. Sun, L. Song, H. Yu, V. Chang, X. Du, M. Guizani, “V2V routing in a VANET based on the autoregressive integrated moving average model”, IEEE Trans. on Vehicular Technology, vol. 68, no. 1, pp. 908-922, Jan. 2019 (doi: 10.1109/TVT.2018.2884525).
[2] O. S. Al-Heety, Z. Zakaria, M. Ismail, M. M. Shakir, S. Alani, H. Alsariera, “A comprehensive survey: benefits, services, recent works, challenges, security, and use cases for SDN-VANET”, IEEE Access, vol. 8, pp. 91028-91047, May 2020 (doi: 10.1109/ACCESS.2020.2992580).
[3] M. Azees, P. Vijayakumar, L. J. Deborah, “Comprehensive survey on security services in vehicular ad-hoc networks”, IET Intelligent Transport Systems, vol. 10, no. 6, pp. 379–388, August 2016 (doi: 10.1049/iet-its.2015.0072).
[4] S. More, U. Naik, “Optimal multipath routing for video transmission in VANETs”, Wireless Personal Communications, vol. 116, no. 1, pp. 805-827, January 2021 (doi: 10.1007/s11277-020-07740-1).
[5] M. Vafaei, A. Khademzadeh, M.A. Pourmina, “QoS-aware multi-path video streaming for urban VANETs using ACO algorithm”, Telecommunication Systems,vol. 75, no. 1, pp.79-96, September 2020 (doi: 10.1007/s11235-020-00677-7).
[6] M. A. Salkuyeh, B. Abolhassani, “Optimal video packet distribution in multipath routing for urban VANETs”, Journal of Communications and Networks, vol. 20, no. 2, pp. 198-206, April 2018 (doi: 10.1109/JCN.2018.000026).
[7] H. Xie, A. Boukerche, A. A. F. Loureiro, “A multipath video streaming solution for vehicular networks with link disjoint and node-disjoint”, IEEE Trans. on Parallel and Distributed Systems, vol. 26, no. 12, pp. 3223-3235, Dec. 2015 (doi: 10.1109/TPDS.2014.2371027).
[8] A. Aliyu, A. H. Abdullah, N. Aslam, A. Altameem, R. Z. Radzi, R. Kharel, M. Mahmud, S. Prakash, U. M. Joda, “Interference-aware multipath video streaming in vehicular environments”, IEEE Access, vol. 6, pp. 47610-47626, August 2018 (doi: 10.1109/ACCESS.2018.2854784).
[9] S. Kamali, J. Opatrny. “A position based ant colony routing algorithm for mobile ad-hoc networks”, Journal of Networks, vol. 3, no. 4, pp. 459-462, Apr. 2008 (doi: 10.1109/ICWMC.2007.68).
[10] J. Nzouonta, N. Rajgure, G. Wang, C. Borcea, “Vanet routing on city roads using real-time vehicular traffic information”, IEEE Trans. on Vehicular Technology, vol. 58, no. 7, pp. 3609-3626, Sept. 2009 (doi: 10.1109/TVT.2009.2014455).
[11] R. Tavakkoli-Moghaddam, N. Safaei, Y. Gholipour, “A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length”, Applied Mathematics and Computation, vol. 176, no. 2, pp. 445-454, May 2006 (doi: 10.1016/j.amc.2005.09.040).
[12] G. Zhang, M. Wu, W. Duan, X. Huang, “Genetic algorithm based QoS perception routing protocol for VANETs”, Wireless Communications and Mobile Computing, vol. 2018, no. 1, pp. 1–10, Jan. 2018 (doi: 10.1155/2018/3897857).
[13] E. Moridi, H. Barati, “RMRPTS: A reliable multi-level routing protocol with tabu search in VANET”, Telecommunication Systems, vol. 65, no. 1, pp. 127–137, May 2017 (doi: 10.1007/s11235-016-0219-6).
[14] G. Li, L. Boukhatem, J. Wu, “Adaptive quality of service based routing for vehicular ad hoc networks with ant colony optimization”, IEEE Trans. on Vehicular Technology, vol. 66, no. 4, pp. 3249-3264, April 2017 (doi: 10.1109/TVT.2016.2586382).
[15] M. H. Eiza, T. Owens, Q. Ni, Q. Shi, “Situation-aware QoS routing algorithm for vehicular ad hoc networks”, IEEE Trans. on Vehicular Technology, vol. 64, no. 12, pp. 5520-5535, Dec. 2015 (doi: 10.1109/TVT.2015.2485305).
[16] F. Goudarzi, H. Asgari, H. S. Al-Raweshidy, “Traffic-aware VANET routing for city environments—A protocol based on ant colony optimization”, IEEE Systems Journal, vol. 13, no. 1, pp. 571-581, March 2019 (doi: 10.1109/JSYST.2018.2806996).
[17] M. Asefi, J. W. Mark, X. S. Shen, “A Mobility-aware and quality-driven retransmission limit adaptation scheme for video streaming over VANETs”, IEEE Trans. on Wireless Communications, vol. 11, no. 5, pp. 1817–1827, May 2012 (doi: 10.1109/TWC.2012.030812.111064).
[18] M. Xing, L. Cai, “Adaptive video streaming with intervehicle relay for highway VANET scenario”, Proceedings of the IEEE/ICC, pp. 5168–5172, Ottawa, Canada, Nov. 2012 (doi: 10.1109/ICC.2012.6364143).
[19] K. Kastsaros, M. Dianati, R. Tafazolli, R. Kernchen, “CLWPR- A novel cross layer optimized position based routing protocol for VANETs”, Proceedings of the IEEE/VNC, pp. 139-146, Amsterdam, Netherlands, Nov. 2011 (doi: 10.1109/VNC.2011.6117135).
[20] C. Wu, S. Ohzahata, T. Kato, “Flexible, portable, and practicable solution for routing in VANETs: A fuzzy constraint Q-learning approach”, IEEE Trans. on Vehicular Technology, vol. 62, no. 9, pp. 4251-4263, Nov. 2013, (doi: 10.1109/TVT.2013.2273945).
[21] O. Alzamzami, I. Mahgoub, “Fuzzy logic-based geographic routing for urban vehicular networks using link quality and achievable throughput estimations”, IEEE Trans. on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2289-2300, June 2019 (doi: 10.1109/TITS.2018.2867177).
[22] H. Xie, A. Boukerche, A. A. F. Loureiro, “MERVS: A novel multichannel error recovery video streaming protocol for vehicle ad hoc networks”, IEEE Trans. on Vehicular Technology, vol. 65, no. 2, pp. 923-935, Feb. 2016 (doi: 10.1109/TVT.2015.2397862).