ارائه یک رویکرد دو مرحلهای جدید جهت بازیابی خودترمیم یک شبکه توزیع هوشمند
محورهای موضوعی : انرژی های تجدیدپذیرحسن کشاورز زیارانی 1 , سید حسین حسینیان 2 , احمد فخاریان 3 *
1 - گروه مهندسی برق- واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
2 - دانشکده مهندسی برق - دانشگاه صنعتی امیرکبیر، تهران، ایران
3 - گروه مهندسی برق- واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
کلید واژه: خودترمیمی, مشارکت واحد, برنامههای پاسخگویی به تقاضا, ریزشبکه جزیرهای,
چکیده مقاله :
خودترمیمی ضروری ترین ویژگی جهت بازیابی شبکه توزیع هوشمند در هنگام بروز خطا است. جزیره سازی منطقه دچار خطا را می توان هم به صورت آفلاین و هم به صورت آنلاین انجام داد. با استفاده از روش جزیره سازی آنلاین برای بازیابی سرویس در منطقه خطادار، می توان مرز ریزشبکه های جزیره ای و تعداد ریزشبکه ها را به صورت بهینه، حین وقوع خطا تعیین نمود. در این مطالعه، یک روش ریاضی دو مرحله ای جدید جهت بازیابی خودترمیمی هنگام وقوع خطا ارائه شده است. در لایه اول آرایش بهینه سیستم در ناحیه دچارخطا، توسط یک مدل ریاضی جدید تعیین می شود. سپس در لایه دوم مسئله مشارکت واحدها در سیستم توزیع هوشمند حل می شود. کاهش یا قطع بار برنامه ریزی مجدد منابع تولید پراکندۀ غیرقابل توزیع و برنامهریزی بهینه سیستمهای ذخیره ساز انرژی تعیین میشوند. زمان اجرای کم و راه حل بهینه از مهم ترین مزایای طرح پیشنهادی است. ابزارهایی مانند کاهش هوشمند بار و برنامه های پاسخ گویی به تقاضا نیز جهت بازیابی بهینه سیستم استفاده شده است. سیستم توزیع 33 شینه IEEE برای اعتبارسنجی روش پیشنهادی استفاده می شود. نتایج مطالعات موردی اثربخشی روش پیشنهادی را نشان میدهد.
Self-Healing is the most essential feature for smart distribution network Restoration when a fault occurs. Islanding of the fault zone can be done both offline and online. Using the online islanding method to restoration the service in the fault zone, the boundary of islanding micro-grids and the number of islands can be determined optimally during the fault. In this study, a novel two-step mathematical method for self-healing restoration after the fault is presented. In the first layer, the optimal arrangement of the system in the faulty area is determined by a new mathematical model. In the first layer, the boundary of island-operating MGs is determined after the fault, which leads to decreasing load shedding and operation costs of the distribution system. Then, in the second layer, the unit commitment problem in the smart distribution system is solved. The load shedding or outage, non-dispatchable distributed generation (DG) resources rescheduling, and optimal planning energy storage systems (ESSs) are determined. Low execution time and the optimal solution are the most essential advantages of the proposed scheme. Tools such as smart load shedding and demand response Programs (DRP) have also been used for optimal system restoration. The IEEE 33-bus distribution system is used to validate the proposed method. The results of case studies demonstrate the effectiveness of the proposed methodology.
[1] X. Gao, X. Ai, "The application of self-healing technology in smart grid", Proceeding of the IEEE/APPEEC, pp. 1-4, Wuhan, China, March 2011 (doi: 10.1109/APPEEC.2011.5748373)
[2] S.M. Amin, B.F. Wallenberg, "Toward a smart grid: power delivery for the 21st century", IEEE Power and Energy Magazine, vol. 3, no. 5, pp. 34-41, Sept./Oct. 2005 (doi: 10.1109/MPAE.2005.1507024).
[3] P. Parikh, I. Voloh, M. Mahony, "Fault location, isolation, and service restoration (FLISR) technique using IEC 61850 GOOSE", Proceeding of the IEEE/PESMG, pp. 1-6, Vancouver, BC, Canada, July 2013 (doi: 10.1109/PESMG.2013.6672862).
[4] E. Drayer, N. Kechagia, J. Hegemann, M. Braun, M. Gabel, R. Caire, "Distributed self-healing for distribution grids with evolving search space", IEEE Trans. on Power Delivery, vol. 33, no. 4, pp. 1755-1764, Oct. 2017 (doi: 10.1109/TPWRD.2017.2762090).
[5] M. Zadsar, M.R. Haghifam, S.M.M. Larimi, "Approach for self-healing resilient operation of active distribution network with microgrid", IET Generation, Transmission and Distribution, vol. 11, no. 18, pp. 4633-4643, Nov. 2017 (doi: 10.1049/iet-gtd.2016.1783).
[6] Z. Wang, J. Wang, "Self-healing resilient distribution systems based on sectionalization into microgrids", Journal of Renewable Energy and Environment, vol. 30, no. 6, pp. 3139-3149, Jan. 2015 (doi: 10.1109/TPWRS.2015.2389753).
[7] S.J. Chen, T.S. Zhan, C.H. Huang, J.L. Chen, C.H Lin, "Nontechnical loss and outage detection using fractional-order self-synchronization error-based fuzzy petri nets in micro-distribution systems", IEEE Trans. on smart grid, vol. 6, no. 1, pp. 411-420, Jan. 2015 (doi: 10.1109/TSG.2014.2345780).
[8] J.B. Leite, J.R.S. Mantovani, "Development of a self-healing strategy with multiagent systems for distribution networks", IEEE Trans. on Smart Grid, vol. 8, no. 5, pp. 2198-2206, Jan. 2016 (doi: 10.1109/TSG.2016.2518128.
[9] N. Meenakshi, D. Kavitha, "Optimized self-healing of networked microgrids using differential evolution algorithm", Proceeding of the IEEE/NPEC, pp. 1-7, Madurai, India, Mar. 2018 (doi: 10.1109/NPEC.2018.8476779).
[10] A. Golshani, W. Sun, Q. Zhou, Q.P. Zheng, J. Tong, "Two-stage adaptive restoration decision support system for a self-healing power grid", IEEE Trans. on Industrial Informatics, vol. 13 no. 6, pp. 2802-2812, June 2017 (doi: 10.1109/TII.2017.2712147).
[11] P.L. Cavalcante, J.C. López, J.F. Franco, M.J. Rider, A.V. Garcia, M.R. Malveira, L.L. Martins, L.M. Direito, "Centralized self-healing scheme for electrical distribution systems", IEEE Trans. on Smart Grid, vol.7, no.1, pp. 145-155, Jan. 2016 (doi: 10.1109/TSG.2015.2454436).
[12] S.B. Ghosn, P. Ranganathan, S. Salem, J. Tang, D. Loegering, K.E. Nygard, "Agent-oriented designs for a self-healing smart grid", Proceeding of the IEEE/SMARTGRID, pp. 461-466, Gaithersburg, MD, USA, Nov. 2010 (doi: 10.1109/SMARTGRID.2010.5622085).
[13] S. Sheng, K.K. Li, W.L. Chan, Z. Xiangjun, D. Xianzhong, "Agent-based self-healing protection system", IEEE Trans. on Power Delivery, vol. 21, no. 2, pp. 610-618, Apr. 2006 (doi: 10.1109/TPWRD.2005.860243).
[14] A. Elmitwally, M. Elsaid, M. Elgamal, Z. Chen, "A fuzzy-multiagent self-healing scheme for a distribution system with distributed generations", IEEE Trans. on power systems, vol. 30, no. 5, pp. 2612-2622, Sept. 2015 (doi: 10.1109/TPWRS.2014.2366072).
[15] E. Shirazi, S. Jadid, "A multiagent design for self-healing in electric power distribution systems", Electric Power Systems Research, vol. 171, no. 1, pp. 230-239, Feb. 2019 (doi: 10.1016/j.epsr.2019.02.025).
[16] D. Sarathkumar, M. Srinivasan, A.A. Stonier, R. Samikannu, N.R Dasari, R.A Raj, "A technical Review on Self-Healing control strategy for smart grid power systems", Proceeding of the IOP Conference Series: Materials Science and Engineering, vol. 1055, no. 1, Article Number: 012153, Erode, India, Dec. 2020.
[17] K.P. Schneider, S. Laval, J. Hansen, R.B. Melton, L. Ponder, L. Fox, J. Hart, J. Hambrick, M. Buckner, M. Baggu, K. Prabakar, M. Manjrekar, S. Essakiappan, L.M. Tolbert, Y. Liu, J. Dong, L. Zhu, A. Smallwood, A. Jayantilal, C. Irwin, G. Yuan, "A distributed power system control architecture for improved distribution system resiliency", IEEE Access, vol. 7, pp. 9957-9970, Jan. 2019 (doi: 10.1109/ACCESS.2019.2891368).
[18] S.S. Refaat, A. Mohamed, P. Kakosimos, "Self-healing control strategy; challenges and opportunities for distribution systems in smart grid", Proceeding of the IEEE/ CPE-POWERENG, vol. 6, no. 1, pp. 36-45, Doha, Qatar, June 2018 (doi: 10.1109/CPE.2018.8372610).
[19] M.N. Ambia, K. Meng, W. Xiao, Z.Y. Dong, "Nested formation approach for networked microgrid self-healing in islanded mode", IEEE Trans. on Power Delivery, vol. 36, no. 1, pp. 452-464, Mar. 2020 (doi: 10.1109/TPWRD.2020.2977769).
[20] L.H.M Leite, W.C Boaventura, L. Errico, P. M. Alessi, "Self-healing in distribution grids supported by photovoltaic dispersed generation in a voltage regulation perspective", Proceeding of the IEEE/ISGT, pp. 1-6, Gramado, Brazil, Sept. 2019 (doi: 10.1109/ISGT-LA.2019.8894944).
[21] F. Pallonetto, M.D. Rosa, F.D. Ettorre, D.P. Finn, "On the assessment and control optimisation of demand response programs in residential buildings", Renewable and Sustainable Energy Reviews, vol. 127, no. 1, Article Number: 109861, Apr. 2020 (doi: 10.1016/j.rser.2020.109861).
[22] R. Deng, Z. Yang, M.Y. Chow, J. Chen, "A survey on demand response in smart grids: Mathematical models and approaches", IEEE Trans. on Industrial Informatics, vol. 11, no. 3, pp. 570-582, June 2015 (doi: 10.1109/TII.2015.2414719).
[23] H. Haddadian, R. Noroozian, "Multi-microgrid-based operation of active distribution networks considering demand response programs", IEEE Trans. on Sustainable Energy, vol. 10, no. 4, pp. 1804-1812, Oct. 2019 (doi: 10.1109/TSTE.2018.2873206).
[24] S.E. Ahmadi, N. Rezaei, "A new isolated renewable based multi microgrid optimal energy management system considering uncertainty and demand response", International Journal of Electrical Power and Energy Systems, vol. 118, no. 1, Article Number: 105760, Dec. 2019 (doi: 10.1016/j.ijepes.2019.105760).
[25] Y. Wang, Y. Huang, Y. Wang, M. Zeng, F. Li, Y. Wang, Y. Zhang, "Energy management of smart micro-grid with response loads and distributed generation considering demand response", Journal of Cleaner Production, vol. 197, no. 1, pp. 1069-1083, Feb. 2017 (doi: 10.1016/j.jclepro.2016.12.053).
[26] A. Mehdizadeh, N. Taghizadegan, J. Salehi, "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management", Applied Energy, vol. 211, pp. 617-630, Nov. 2017 (doi: 10.1016/j.apenergy.2017.11.084).
[27] R.S. Netto, G.R. Ramalho, B.D. Bonatto, O.A.S. Carpinteiro, A.C. Souza, D.Q. Oliveira, R.A.S. Braga, "Real-time framework for energy management system of a smart microgrid using multiagent systems", Energies, vol. 11, no. 3, pp. 656, Mar. 2018 (doi: 10.3390/en11030656).
[28] W.Y. Chiu, J.T. Hsieh, C.M. Chen, "Pareto optimal demand response based on energy costs and load factor in smart grid", IEEE Trans. on Industrial Informatics, vol. 16, no. 3, pp. 1811-1822, Mar. 2020 (doi: 10.1109/TII.2019.2928520).
[29] H. Mehrjerdi, R. Hemmati, "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building", Renewable Energy, vol. 146, pp. 568-579, July 2019 (doi: 10.1016/j.renene.2019.07.004).
[30] L. Bagherzadeh, H. Shayeghi, S. Pirouzi, "Coordinated flexible energy and self‐healing management according to the multi‐agent system‐based restoration scheme in active distribution network", IET Renewable Power Generation, vol. 15, no. 8, pp. 1765-1777, Mar. 2021 (doi: 10.1049/rpg2.12145).
[31] S. Mohsen, M.H. Nezhad, A. Fereidunian, H. Lesani, M.H. Gavgani, "Enhancement of self-healing property of smart grid in islanding mode using electric vehicles and direct load control", Proceeding of the IEEE/SGC, pp. 1-6, Tehran, Iran, Dec. 2014 (doi: 10.1109/SGC.2014.7090860).
[32] M. Mahdi, V.M.I. Genc, "A real-time self-healing methodology using model-and measurement-based islanding algorithms", IEEE Trans. on Smart Grid vol. 10, no. 2, pp. 1195-1204, Mar. 2019 (doi: 10.1109/TSG.2017.2760698).
[33] P. Fernández-Porras, M. Panteli, "Intentional controlled islanding: when to island for power system blackout prevention", IET Generation, Transmission and Distribution, vol. 12, no. 14, pp. 3542-3549, June 2018 (doi: 10.1049/iet-gtd.2017.1526).
[34] M. Hemmati, B. Mohammadi-Ivatloo, M. Abapour, A. Anvari-Moghaddam, "Optimal chance-constrained scheduling of reconfigurable microgrids considering islanding operation constraints", IEEE Systems Journal, vol. 14, no. 4, pp. 5340-5349, Dec. 2020 (doi: 10.1109/JSYST.2020.2964637).
[35] W. Sun, S. Ma, I. Alvarez-Fernandez, A. Golshani, "Optimal self-healing strategy for microgrid islanding", IET Smart Grid, vol. 1, no. 4, pp. 143-150, Oct. 2018 (doi: 10.1049/iet-stg.2018.0057).
[36] M. Yang, J. Wang, J. An, "Day-ahead optimization scheduling for islanded microgrid considering unit's frequency regulation characteristics and demand response", IEEE Access, vol. 8, pp. 7093-7102, Dec. 2019 (doi: 10.1109/ACCESS.2019.2963335).
[37] J. Nelson, N.G. Johnson, K. Fahy, T.A. Hansen, "Statistical development of microgrid resilience during islanding operations", Applied Energy, vol. 279, Article Number: 115724, Aug. 2020 (doi: 10.1016/j.apenergy.2020.115724).
[38] M.K. Sharma, P. Kumar, V. Kumar, "Intentional islanding of microgrid", Proceeding of the IEEE/CERA, pp. 247-251, Roorkee, India, Oct. 2017 (doi: 10.1109/CERA.2017.8343335).
[39] D. Li, S. Wang, J. Zhan, Y. Zhao, "A self-healing reconfiguration technique for smart distribution networks with DGs", Proceeding of the IEEE/ICECENG, pp. 4318-4321, Yichang, China, Sept. 2011 (doi: 10.1109/ICECENG.2011.6056982).
[40] M.F. Zia, E. Elbouchikhi, M. Benbouzid, J.M. Guerrero, "Energy management system for an islanded microgrid with convex relaxation", Journal of Renewable Energy and Environment, vol. 55, no. 6, pp. 7175-7185, May 2019 (doi: 10.1109/TIA.2019.2917357).
[41] A. Jafari, H.G. Ganjehlou, T. Khalili, A. Bidram, "A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids", Applied Energy, vol. 270, no. 15, Article Number: 115170, May 2020 (doi: 10.1016/j.apenergy.2020.115170).
[42] M.H. Andishgar, E. Gholipour, R. Hooshmand, "An overview of control approaches of inverter-based microgrids in islanding mode of operation", Renewable and Sustainable Energy Reviews, vol. 80, no. 1, pp. 1043-1060, May 2017 (doi: 10.1016/j.rser.2017.05.267).
[43] K. Balasubramaniam, P. Saraf, R. Hadidi, E.B. Makram, "Energy management system for enhanced resiliency of microgrids during islanded operation", Electric Power Systems Research, vol. 137, no. 1, pp. 133-141, Apr. 2016 (doi: 10.1016/j.epsr.2016.04.006).
[44] W. Alharbi, K. Bhattacharya, "Demand response and energy storage in MV islanded microgrids for high penetration of renewables", Proceeding of the IEEE/EPEC, vol. 6, no. 1, pp. 1-6, Halifax, NS, Canada, Aug. 2013 (doi: 10.1109/EPEC.2013.6802928).
[45] B.S.K Patnam, N.M. Pindoriya, "Demand response in consumer-centric electricity market: Mathematical models and optimization problems", Electric Power Systems Research, vol. 193, no. 1, Article Number: 106923, Oct. 2020 (doi: 10.1016/j.epsr.2020.106923).
[46] S. Raza, T. ur Rahman, M. Saeed, S. Jameel, "Performance analysis of power system parameters for islanding detection using mathematical morphology", Ain Shams Engineering Journal, vol. 12, no. 1, pp. 517-527, Mar. 2021 (doi: 10.1016/j.asej.2020.07.023).
[47] M.A. Farhan, K.S. Swarup, "Mathematical morphology-based islanding detection for distributed generation", IET Generation, Transmission and Distribution, vol. 10, no. 2, pp. 518-525, Feb. 2016 (doi: 10.1049/iet-gtd.2015.0910).
[48] K. Choopani, M. Hedayati, R. Effatnejad, "Self‐healing optimization in active distribution network to improve reliability, and reduction losses, switching cost and load shedding", International Transactions on Electrical Energy Systems, vol. 30, no. 5, Article Number: e12348, May 2020 (doi: 10.1002/2050-7038.12348).
[49] S. Poudel, A. Dubey, K.P. Schneider, "A generalized framework for service restoration in a resilient power distribution system", IEEE Systems Journal, vol. 16, no. 1, pp. 252-263, Mar. 2022 (doi: 10.1109/JSYST.2020.3011901).
[50] S. Sanaei, M.R. Haghifam, A. Safdarian, "Smart load shedding in distribution networks considering the importance of loads", Iranian Electric Industry Journal of Quality and Productivity, vol. 9, no. 3, pp. 68-80, Sept. 2020 (in Persian).
[51] J. Wang, H. Zhong, Q. Xia, C. Kang, "Optimal joint-dispatch of energy and reserve for CCHP-based microgrids", IET Generation, Transmission and Distribution, vol. 11, no.3, pp. 785-794, Feb. 2017 (doi: 10.1049/iet-gtd.2016.0656).
[52] D. Yu, T. Zhang, G. He, S. Nojavan, K. Jermsittiparsert, N. Ghadimi, "Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique", Journal of Energy Storage, vol. 27, no. 1, Article Number: 101054, Oct. 2019 (doi: 10.1016/j.est.2019.101054).
[53] H. Ahmadi, J.R. Marti, "Linear current flow equations with application to distribution systems reconfiguration", IEEE Trans. on Power Systems, vol. 30, no. 4, pp. 2073-2080, Oct. 2014 (doi: 10.1109/TPWRS.2014.2360363).
[54] L. Montero, B. Antonio, R. Javier. "A review on the unit commitment problem: approaches, techniques, and resolution methods", Energies, vol. 15, no. 4, pp. 1296, Feb. 2022 ( doi:10.3390/en15041296).
[55] C. Shao, X. Wang, M. Shahidehpour, "An MILP-based optimal power flow in multicarrier energy systems", IEEE Trans. on Sustainable Energy , vol. 8, no. 1, pp. 239-248, Jan. 2017 (doi: 10.1109/TSTE.2016.2595486 )
[56] S. Nojavan, H. Allah Aalami. "Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program", Energy Conversion and Management, vol. 103, pp.1008-1018, Oct. 2015 (doi: 10.1016/j.enconman.2015.07.018).
[57] A. Ahmadi, J. Aghaei, H.A. Shayanfar, A. Rabiee. "Mixed integer programming of multiobjective hydro-thermal self-scheduling", Applied Soft Computing, vol. 12, no. 8, pp.2137-2146, Aug. 2012 (doi: 10.1016/j.asoc.2012.03.020).
_||_