افزایش تفکیکپذیری زاویهای رادارهای MIMO با روش آرایه تودرتودوبعدی
محورهای موضوعی : انرژی های تجدیدپذیررسول دهقانی 1 , روح اله آقاجانی 2 *
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات پردازش دیجیتال و بینایی ماشین- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: رادار MIMO, آرایه مجازی, آرایه تودرتو, افزایش رزولوشن,
چکیده مقاله :
: در سیستمهای آرایه فازی مرسوم، برای بهبود تفکیکپذیری فضایی، نیاز به افزایش طول آرایه و در نتیجه افزایش تعداد المانهای آنتن است. این نیاز را میتوان در رادارهای چند ورودی- چند خروجی (MIMO) و با استفاده از سیگنالهای متعامد ارسالی از چندین فرستنده و استفاده از المانهای مجازی حاصل از آن رفع کرد. مکان المانهای مجازی از کانولوشن مکان المانهای فیزیکی فرستنده و گیرنده در هم به دست میآید. برای درک کارایی رادارهای MIMO مفهومی به نام آرایه مجازی معرفی شده است. هرچه آرایه مجازی بزرگتر باشد تفکیکپذیری زاویهای رادار افزایش مییابد. افزایش درجه آزادی آرایه مجازی بسیار وابسته به چینش المانهای آرایه گیرنده و فرستنده است. آرایه تودرتو یکی از روشهای شناخته شده در چینش المانهای آرایه راداری MIMO است. در این مقاله آرایه تودرتوی جدید بررسی شده و سپس در یک بعد پیادهسازی شده است. ایده جدید این مقاله، استفاده از آرایه تودرتوی جدید در دو بعد است. یک روش چند مرحلهای برای پیادهسازی آرایه دو بعدی با استفاده از چینش تودرتوی جدید برای یک رادار MIMO ارائه شده است که قابل تعمیم به هر ساختار دیگری با تعداد المانهای مختلف است. در انتها مزایای روش ارائه شده در قالب پهنای زاویهای بیم اصلی رادار آورده شده است. نتایج به دست آمده نشان میدهد که روش ارائه شده در این مقاله بسیار مؤثرتر از روشهای دیگر است. نتایج مقایسهای ارائه شده در انتهای این مقاله نشان میدهد که پهنای بیم نصف توان روش ارائه شده تقریبا 3/0 درجه است، در حالی که این مقدار برای روش تودرتو بیش از 2 درجه است.
In phased array systems, increasing the array length and consequently increasing the number of antenna elements are needed to improve spatial resolution. It can be addressed by MIMO radars using orthogonal signals from multiple transmitters and using the virtual array. Virtual element's locations are derived from the convolution of the physical elements of the transmitter and receiver. To understand the functionality of MIMO radars, virtual array has been introduced. As the virtual array be larger, the radar angle resolution increase. Increasing the degree of freedom of the virtual array is highly dependent on the array of transmitter and receiver elements placement. The Nested Array which is one of the well-known methods in alignment of MIMO radar array elements, is investigated. In this article, the new nested array is examined and implemented in one dimension. The very innovative idea of this article is to use the new 2D nested array. A multi-step approach for implementing two-dimensional arrays using a new nested array for a MIMO radar is presented which can be generalized to any other structure with different number of elements. Finally, the advantages of the proposed method in terms of angular bandwidth of the main radar are presented. The results show that the proposed method is much more efficient than the other methods. The comparative results presented at the end of this article shows that the half-power beam width of the proposed method is approximately 0.3 degrees while this value for the nested method is more than 2 degrees.
[1] D.J. Rabideau, P. Parker, "Ubiquitous MIMO multifunction digital array radar", Proceeding of the IEEE/ACSSC, Pacific Grove, CA, USA, vol. 1, pp. 1057-1064, Nov. 2003 (doi: 10.1109/ACSSC.2003.1292087).
[2] J. Li, P. Stoica, "MIMO radar with colocated antennas", IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106-114, Sept. 2007 (doi: 10.1109/MSP.2007.904812).
[3] M.A. Richards, J. Scheer, W.A. Holm, W.L. Melvin, Principles of modern radar, Citeseer, pp. 395-502, 2010.
[4] M.S. Davis, G.A. Showman, A.D. Lanterman, "Coherent MIMO radar: The phased array and orthogonal waveforms", IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 8, pp. 76-91, Aug. 2014 (doi:10.1109/MAES.2014.130148).
[5] M.M.E. Asgari, R. Hafezifard, "Improved angular tracking accuracy in phased array radar", Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 33, Spring 2018 (in Persian).
[6] M. Yang, L. Sun, X. Yuan, B. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray", IEEE Signal Processing Letters, vol. 25, no. 1, pp. 40-44, Jan. 2018 (doi: 10.1109/LSP.2017.2766294).
[7] S. Qin, Y.D. Zhang, M.G. Amin, "DOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar”, Digital Signal Processing, vol. 61, no. 2, pp. 26-34, Feb. 2017 (doi: 10.1016/j.dsp.2016.06.006).
[8] S. Qin, Y.D. Zhang, M.G. Amin, "DOA estimation of mixed coherent and uncorrelated signals exploiting a nested MIMO system”, Proceeding of the IEEE/BenMAS, Philadelphia, PA, Sept. 2014 (doi: 10.1016/j.dsp.2016.06.006)
[9] C.-C. Weng, P. Vaidyanathan, "Nonuniform sparse array design for active sensing”, Proceeding of IEEE/ASILOMAR, Pacific Grove, CA, USA, Nov. 2011 (doi: 10.1109/ACSSC.2011.6190175).
[10] E. BouDaher, F. Ahmad, M. G. Amin, "Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays”, IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1628-1632, Oct. 2015 (doi: 10.1109/LSP.2015.2417807).
[11] C.-Y. Chen, P. P. Vaidyanathan, "Minimum redundancy MIMO radars”, Proceeding of the IEEE/ISCAS, Seattle, WA, USA, May 2008. (doi: 10.1109/ISCAS.2008.4541350).
[12] D. Pearson, S. U. Pillai, Y. Lee, "An algorithm for near-optimal placement of sensor elements”, IEEE Transactions on Information Theory, vol. 36, no. 6, pp. 1280-1284, Sept. 1990.(doi: 10.1109/18.59928)
[13] C. S. Ruf, "Numerical annealing of low-redundancy linear arrays”, IEEE Trans. on Antennas and Propagation, vol. 41, no. 1, pp. 85-90, Jan. 1993.(doi: 10.1109/8.210119).
[14] D. A. Linebarger, I. H. Sudborough, I. G. Tollis, "Difference bases and sparse sensor arrays”, IEEE Transactions on information theory, vol. 39, no. 2, pp. 716-721, Feb. 1993.(doi: 10.1109/18.212309)
[15] D. Linebarger, "A fast method for computing the coarray of sparse linear arrays”, IEEE Trans. on Antennas and Propagation, vol. 40, no. 9, pp. 1109-1112, Sept. 1992 (doi: 10.1109/8.166540).
[16] P. Pal, P. Vaidyanathan, "Nested arrays in two dimensions, Part I: Geometrical considerations”, IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4694-4705, Sept. 2012 (doi: 10.1109/TSP.2012.2203814)
[17] S. U. Pillai, Y. Bar-Ness, F. Haber, "A new approach to array geometry for improved spatial spectrum estimation”, Proceedings of the IEEE, vol. 73, no. 10, pp. 1522-1524, Oct. 1985 (doi: 10.1109/PROC.1985.13324).
[18] P. Pal, P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom”, IEEE Trans. on Signal Processing, vol. 58, no. 8, pp. 4167-4181, Agu. 2010 (doi: 10.1109/TSP.2010.2049264)
[19] P. Alinezhad, "Analysis and design of nested conformal arrays”, Master of Science Faculty of Engineering Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, 2014 (in Persian).
[20] M. Yangg, A. M. Haimovich, B. Chen, and X. Yuan, "A new array geometry for DOA estimation with enhanced degrees of freedom”, Proceeding of the IEEE/ICASSP ,Shanghai, China, May 2016 (doi: 10.1109/ICASSP.2016.7472236).
_||_[1] D.J. Rabideau, P. Parker, "Ubiquitous MIMO multifunction digital array radar", Proceeding of the IEEE/ACSSC, Pacific Grove, CA, USA, vol. 1, pp. 1057-1064, Nov. 2003 (doi: 10.1109/ACSSC.2003.1292087).
[2] J. Li, P. Stoica, "MIMO radar with colocated antennas", IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106-114, Sept. 2007 (doi: 10.1109/MSP.2007.904812).
[3] M.A. Richards, J. Scheer, W.A. Holm, W.L. Melvin, Principles of modern radar, Citeseer, pp. 395-502, 2010.
[4] M.S. Davis, G.A. Showman, A.D. Lanterman, "Coherent MIMO radar: The phased array and orthogonal waveforms", IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 8, pp. 76-91, Aug. 2014 (doi:10.1109/MAES.2014.130148).
[5] M.M.E. Asgari, R. Hafezifard, "Improved angular tracking accuracy in phased array radar", Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 33, Spring 2018 (in Persian).
[6] M. Yang, L. Sun, X. Yuan, B. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray", IEEE Signal Processing Letters, vol. 25, no. 1, pp. 40-44, Jan. 2018 (doi: 10.1109/LSP.2017.2766294).
[7] S. Qin, Y.D. Zhang, M.G. Amin, "DOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar”, Digital Signal Processing, vol. 61, no. 2, pp. 26-34, Feb. 2017 (doi: 10.1016/j.dsp.2016.06.006).
[8] S. Qin, Y.D. Zhang, M.G. Amin, "DOA estimation of mixed coherent and uncorrelated signals exploiting a nested MIMO system”, Proceeding of the IEEE/BenMAS, Philadelphia, PA, Sept. 2014 (doi: 10.1016/j.dsp.2016.06.006)
[9] C.-C. Weng, P. Vaidyanathan, "Nonuniform sparse array design for active sensing”, Proceeding of IEEE/ASILOMAR, Pacific Grove, CA, USA, Nov. 2011 (doi: 10.1109/ACSSC.2011.6190175).
[10] E. BouDaher, F. Ahmad, M. G. Amin, "Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays”, IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1628-1632, Oct. 2015 (doi: 10.1109/LSP.2015.2417807).
[11] C.-Y. Chen, P. P. Vaidyanathan, "Minimum redundancy MIMO radars”, Proceeding of the IEEE/ISCAS, Seattle, WA, USA, May 2008. (doi: 10.1109/ISCAS.2008.4541350).
[12] D. Pearson, S. U. Pillai, Y. Lee, "An algorithm for near-optimal placement of sensor elements”, IEEE Transactions on Information Theory, vol. 36, no. 6, pp. 1280-1284, Sept. 1990.(doi: 10.1109/18.59928)
[13] C. S. Ruf, "Numerical annealing of low-redundancy linear arrays”, IEEE Trans. on Antennas and Propagation, vol. 41, no. 1, pp. 85-90, Jan. 1993.(doi: 10.1109/8.210119).
[14] D. A. Linebarger, I. H. Sudborough, I. G. Tollis, "Difference bases and sparse sensor arrays”, IEEE Transactions on information theory, vol. 39, no. 2, pp. 716-721, Feb. 1993.(doi: 10.1109/18.212309)
[15] D. Linebarger, "A fast method for computing the coarray of sparse linear arrays”, IEEE Trans. on Antennas and Propagation, vol. 40, no. 9, pp. 1109-1112, Sept. 1992 (doi: 10.1109/8.166540).
[16] P. Pal, P. Vaidyanathan, "Nested arrays in two dimensions, Part I: Geometrical considerations”, IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4694-4705, Sept. 2012 (doi: 10.1109/TSP.2012.2203814)
[17] S. U. Pillai, Y. Bar-Ness, F. Haber, "A new approach to array geometry for improved spatial spectrum estimation”, Proceedings of the IEEE, vol. 73, no. 10, pp. 1522-1524, Oct. 1985 (doi: 10.1109/PROC.1985.13324).
[18] P. Pal, P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom”, IEEE Trans. on Signal Processing, vol. 58, no. 8, pp. 4167-4181, Agu. 2010 (doi: 10.1109/TSP.2010.2049264)
[19] P. Alinezhad, "Analysis and design of nested conformal arrays”, Master of Science Faculty of Engineering Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, 2014 (in Persian).
[20] M. Yangg, A. M. Haimovich, B. Chen, and X. Yuan, "A new array geometry for DOA estimation with enhanced degrees of freedom”, Proceeding of the IEEE/ICASSP ,Shanghai, China, May 2016 (doi: 10.1109/ICASSP.2016.7472236).